亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别

2024-08-23 15:04

本文主要是介绍亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逻辑回归
  • 实现手写数字识别
    • 训练模型
    • 测试模型
  • 总结

逻辑回归

逻辑回归(Logistic Regression)虽然是一种广泛使用的分类算法,但它通常更适用于二分类问题。然而,通过一些策略(如一对多分类,也称为OvR或One-vs-Rest),逻辑回归也可以被扩展到多分类问题,如手写数字识别(通常是0到9的10个类别)。

本篇我们就来尝试一下如何通过逻辑回归来实现手写数字识别

  1. 训练模型
  2. 测试模型

实现手写数字识别

训练模型

  1. 收集数据

在这里插入图片描述

  1. 读取图片

使用opencv处理图片,将图片的像素数值读取进来,并返回的是一个三维(高,宽,颜色)numpy数组:

 pip install opencv-python==3.4.11.45
import cv2
img = cv2.imread("digits.png")
  1. 转为灰度图

将图片转化为灰度图,从而让三维数组变成二位的数组:

grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  1. 处理图片信息

对图片进行处理:将其先垂直切分(横向)成50份,再将每一份水平切分(竖向)成100份,这样我们的每份图片的像素值都为20*20(训练的图片比较规范)共500个,比如:

在这里插入图片描述

import numpy as np
img_info = [np.hsplit(row,100) for row in np.vsplit(grey,50)]
  1. 装进array数组

将切分的每一份图片像素数据都装进array数组中:

x = np.array(img_info)
  1. 分隔训练集与测试集

将数据竖着分隔一半,一半作为训练集,一般作为测试集:

train_x = x[:,:50]
test_x = x[:,50:100]
  1. 调整数据结构

由于我们最后要将数据放在逻辑回归模型中训练,我们得将数据结构调整为适合逻辑回归算法训练的结构,那么我们就来改变每份图片数组的维度:reshape:

new_train_x = train_x.reshape(-1,400).astype(np.float32)
new_test_x = test_x.reshape(-1,400).astype(np.float32)
  1. Z-score标准化

逻辑回归算法进行手写数字识别时,对数据进行标准化是为了提高优化算法的收敛速度、提升模型的预测性能,并避免潜在的数值问题。将数据都进行表示话,避免参数的影响:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
fin_train = scaler.fit_transform(new_train_x)
fin_test = scaler.fit_transform(new_test_x)
  1. 分配标签

我们训练着那么多的数据,却没有给他们具体的类别标签(图像的实际值),因为我们之前的图像处理都是在寻找图像特征,但是并没有给他们一个具体对应的类别,只有空荡荡的特征,无法分类,所以我们得给切分的每份图片打上它们对应的标签:

k = np.arange(10)
train_y = np.repeat(k,250)
test_y = np.repeat(k,250)
train_y = train_y.ravel()
  1. 交叉验证

在逻辑回归的算法中,逻辑模型的参数中,有一参数为正则化强度C,越小的数值表示越强的正则化。我们要进行调参数,看看哪个惩罚因子最为合适,使模型拟合效果更好:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score#交叉验证选择较优的惩罚因子
scores = []
c_param_range = [0.01,0.1,1,10,100] #参数:一般常用的惩罚因子for i in c_param_range:lr = LogisticRegression(C = i,penalty='l2',solver='lbfgs',max_iter=1000,random_state=0)# C表示正则化强度,越小的数值表示越强的正则化。防止过拟合score = cross_val_score(lr,fin_train,train_y,cv=10,scoring='recall_macro')#交叉验证,将模型和数据集传入,对其进行划分,每份轮流作为测试集来测试模型。返回一个列表对象score_mean = sum(score)/len(score)scores.append(score_mean)
c_choose = c_parma[np.argmax(scores)] #argmax取出最大值的索引位置
  1. 训练模型
lr_model = LogisticRegression(C = c_choose,max_iter=1000,random_state=0)
lr_model.fit(fin_train,train_y)

测试模型

  1. 先用训练数据再次进入模型测试,查看他本身的模型训练效果怎么样:
from sklearn import metrics
train_predict = lr_model.predict(fin_train)
print(metrics.classification_report(train_y,train_predict))  #查看混淆矩阵
-------------------------------precision    recall  f1-score   support0       0.99      1.00      0.99       2501       0.98      1.00      0.99       2502       1.00      0.98      0.99       2503       0.98      0.98      0.98       2504       1.00      1.00      1.00       2505       0.98      0.98      0.98       2506       0.99      1.00      1.00       2507       0.98      0.99      0.98       2508       0.98      0.99      0.99       2509       0.99      0.97      0.98       250accuracy                           0.99      2500macro avg       0.99      0.99      0.99      2500
weighted avg       0.99      0.99      0.99      2500
  1. 再用分割的测试集来测试模型:
test_predict = lr_model.predict(fin_test)
print(metrics.classification_report(test_y,test_predict))
---------------------------precision    recall  f1-score   support0       0.95      0.96      0.95       2501       0.94      0.96      0.95       2502       0.88      0.86      0.87       2503       0.90      0.86      0.88       2504       0.92      0.84      0.88       2505       0.84      0.90      0.87       2506       0.92      0.95      0.93       2507       0.89      0.93      0.91       2508       0.89      0.84      0.86       2509       0.83      0.86      0.85       250accuracy                           0.90      2500macro avg       0.90      0.90      0.89      2500
weighted avg       0.90      0.90      0.89      2500

到这为止!!我们就训练好一个关于手写数字识别的逻辑回归模型啦!!

总结

本篇介绍了如何用逻辑回归算法实现手写数字识别:

  1. 逻辑回归更适合二分类算法,但是也可以通过一些策略,扩展到多分类问题。
  2. 注意要将读取的数据进行标准化操作,灰度图图片数据相差过大。
  3. 学会调整参数,优化模型,比如本篇在交叉验证中找寻最优的惩罚因子。

这篇关于亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099719

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg