亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别

2024-08-23 15:04

本文主要是介绍亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逻辑回归
  • 实现手写数字识别
    • 训练模型
    • 测试模型
  • 总结

逻辑回归

逻辑回归(Logistic Regression)虽然是一种广泛使用的分类算法,但它通常更适用于二分类问题。然而,通过一些策略(如一对多分类,也称为OvR或One-vs-Rest),逻辑回归也可以被扩展到多分类问题,如手写数字识别(通常是0到9的10个类别)。

本篇我们就来尝试一下如何通过逻辑回归来实现手写数字识别

  1. 训练模型
  2. 测试模型

实现手写数字识别

训练模型

  1. 收集数据

在这里插入图片描述

  1. 读取图片

使用opencv处理图片,将图片的像素数值读取进来,并返回的是一个三维(高,宽,颜色)numpy数组:

 pip install opencv-python==3.4.11.45
import cv2
img = cv2.imread("digits.png")
  1. 转为灰度图

将图片转化为灰度图,从而让三维数组变成二位的数组:

grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  1. 处理图片信息

对图片进行处理:将其先垂直切分(横向)成50份,再将每一份水平切分(竖向)成100份,这样我们的每份图片的像素值都为20*20(训练的图片比较规范)共500个,比如:

在这里插入图片描述

import numpy as np
img_info = [np.hsplit(row,100) for row in np.vsplit(grey,50)]
  1. 装进array数组

将切分的每一份图片像素数据都装进array数组中:

x = np.array(img_info)
  1. 分隔训练集与测试集

将数据竖着分隔一半,一半作为训练集,一般作为测试集:

train_x = x[:,:50]
test_x = x[:,50:100]
  1. 调整数据结构

由于我们最后要将数据放在逻辑回归模型中训练,我们得将数据结构调整为适合逻辑回归算法训练的结构,那么我们就来改变每份图片数组的维度:reshape:

new_train_x = train_x.reshape(-1,400).astype(np.float32)
new_test_x = test_x.reshape(-1,400).astype(np.float32)
  1. Z-score标准化

逻辑回归算法进行手写数字识别时,对数据进行标准化是为了提高优化算法的收敛速度、提升模型的预测性能,并避免潜在的数值问题。将数据都进行表示话,避免参数的影响:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
fin_train = scaler.fit_transform(new_train_x)
fin_test = scaler.fit_transform(new_test_x)
  1. 分配标签

我们训练着那么多的数据,却没有给他们具体的类别标签(图像的实际值),因为我们之前的图像处理都是在寻找图像特征,但是并没有给他们一个具体对应的类别,只有空荡荡的特征,无法分类,所以我们得给切分的每份图片打上它们对应的标签:

k = np.arange(10)
train_y = np.repeat(k,250)
test_y = np.repeat(k,250)
train_y = train_y.ravel()
  1. 交叉验证

在逻辑回归的算法中,逻辑模型的参数中,有一参数为正则化强度C,越小的数值表示越强的正则化。我们要进行调参数,看看哪个惩罚因子最为合适,使模型拟合效果更好:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score#交叉验证选择较优的惩罚因子
scores = []
c_param_range = [0.01,0.1,1,10,100] #参数:一般常用的惩罚因子for i in c_param_range:lr = LogisticRegression(C = i,penalty='l2',solver='lbfgs',max_iter=1000,random_state=0)# C表示正则化强度,越小的数值表示越强的正则化。防止过拟合score = cross_val_score(lr,fin_train,train_y,cv=10,scoring='recall_macro')#交叉验证,将模型和数据集传入,对其进行划分,每份轮流作为测试集来测试模型。返回一个列表对象score_mean = sum(score)/len(score)scores.append(score_mean)
c_choose = c_parma[np.argmax(scores)] #argmax取出最大值的索引位置
  1. 训练模型
lr_model = LogisticRegression(C = c_choose,max_iter=1000,random_state=0)
lr_model.fit(fin_train,train_y)

测试模型

  1. 先用训练数据再次进入模型测试,查看他本身的模型训练效果怎么样:
from sklearn import metrics
train_predict = lr_model.predict(fin_train)
print(metrics.classification_report(train_y,train_predict))  #查看混淆矩阵
-------------------------------precision    recall  f1-score   support0       0.99      1.00      0.99       2501       0.98      1.00      0.99       2502       1.00      0.98      0.99       2503       0.98      0.98      0.98       2504       1.00      1.00      1.00       2505       0.98      0.98      0.98       2506       0.99      1.00      1.00       2507       0.98      0.99      0.98       2508       0.98      0.99      0.99       2509       0.99      0.97      0.98       250accuracy                           0.99      2500macro avg       0.99      0.99      0.99      2500
weighted avg       0.99      0.99      0.99      2500
  1. 再用分割的测试集来测试模型:
test_predict = lr_model.predict(fin_test)
print(metrics.classification_report(test_y,test_predict))
---------------------------precision    recall  f1-score   support0       0.95      0.96      0.95       2501       0.94      0.96      0.95       2502       0.88      0.86      0.87       2503       0.90      0.86      0.88       2504       0.92      0.84      0.88       2505       0.84      0.90      0.87       2506       0.92      0.95      0.93       2507       0.89      0.93      0.91       2508       0.89      0.84      0.86       2509       0.83      0.86      0.85       250accuracy                           0.90      2500macro avg       0.90      0.90      0.89      2500
weighted avg       0.90      0.90      0.89      2500

到这为止!!我们就训练好一个关于手写数字识别的逻辑回归模型啦!!

总结

本篇介绍了如何用逻辑回归算法实现手写数字识别:

  1. 逻辑回归更适合二分类算法,但是也可以通过一些策略,扩展到多分类问题。
  2. 注意要将读取的数据进行标准化操作,灰度图图片数据相差过大。
  3. 学会调整参数,优化模型,比如本篇在交叉验证中找寻最优的惩罚因子。

这篇关于亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099719

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q