亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别

2024-08-23 15:04

本文主要是介绍亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逻辑回归
  • 实现手写数字识别
    • 训练模型
    • 测试模型
  • 总结

逻辑回归

逻辑回归(Logistic Regression)虽然是一种广泛使用的分类算法,但它通常更适用于二分类问题。然而,通过一些策略(如一对多分类,也称为OvR或One-vs-Rest),逻辑回归也可以被扩展到多分类问题,如手写数字识别(通常是0到9的10个类别)。

本篇我们就来尝试一下如何通过逻辑回归来实现手写数字识别

  1. 训练模型
  2. 测试模型

实现手写数字识别

训练模型

  1. 收集数据

在这里插入图片描述

  1. 读取图片

使用opencv处理图片,将图片的像素数值读取进来,并返回的是一个三维(高,宽,颜色)numpy数组:

 pip install opencv-python==3.4.11.45
import cv2
img = cv2.imread("digits.png")
  1. 转为灰度图

将图片转化为灰度图,从而让三维数组变成二位的数组:

grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  1. 处理图片信息

对图片进行处理:将其先垂直切分(横向)成50份,再将每一份水平切分(竖向)成100份,这样我们的每份图片的像素值都为20*20(训练的图片比较规范)共500个,比如:

在这里插入图片描述

import numpy as np
img_info = [np.hsplit(row,100) for row in np.vsplit(grey,50)]
  1. 装进array数组

将切分的每一份图片像素数据都装进array数组中:

x = np.array(img_info)
  1. 分隔训练集与测试集

将数据竖着分隔一半,一半作为训练集,一般作为测试集:

train_x = x[:,:50]
test_x = x[:,50:100]
  1. 调整数据结构

由于我们最后要将数据放在逻辑回归模型中训练,我们得将数据结构调整为适合逻辑回归算法训练的结构,那么我们就来改变每份图片数组的维度:reshape:

new_train_x = train_x.reshape(-1,400).astype(np.float32)
new_test_x = test_x.reshape(-1,400).astype(np.float32)
  1. Z-score标准化

逻辑回归算法进行手写数字识别时,对数据进行标准化是为了提高优化算法的收敛速度、提升模型的预测性能,并避免潜在的数值问题。将数据都进行表示话,避免参数的影响:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
fin_train = scaler.fit_transform(new_train_x)
fin_test = scaler.fit_transform(new_test_x)
  1. 分配标签

我们训练着那么多的数据,却没有给他们具体的类别标签(图像的实际值),因为我们之前的图像处理都是在寻找图像特征,但是并没有给他们一个具体对应的类别,只有空荡荡的特征,无法分类,所以我们得给切分的每份图片打上它们对应的标签:

k = np.arange(10)
train_y = np.repeat(k,250)
test_y = np.repeat(k,250)
train_y = train_y.ravel()
  1. 交叉验证

在逻辑回归的算法中,逻辑模型的参数中,有一参数为正则化强度C,越小的数值表示越强的正则化。我们要进行调参数,看看哪个惩罚因子最为合适,使模型拟合效果更好:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score#交叉验证选择较优的惩罚因子
scores = []
c_param_range = [0.01,0.1,1,10,100] #参数:一般常用的惩罚因子for i in c_param_range:lr = LogisticRegression(C = i,penalty='l2',solver='lbfgs',max_iter=1000,random_state=0)# C表示正则化强度,越小的数值表示越强的正则化。防止过拟合score = cross_val_score(lr,fin_train,train_y,cv=10,scoring='recall_macro')#交叉验证,将模型和数据集传入,对其进行划分,每份轮流作为测试集来测试模型。返回一个列表对象score_mean = sum(score)/len(score)scores.append(score_mean)
c_choose = c_parma[np.argmax(scores)] #argmax取出最大值的索引位置
  1. 训练模型
lr_model = LogisticRegression(C = c_choose,max_iter=1000,random_state=0)
lr_model.fit(fin_train,train_y)

测试模型

  1. 先用训练数据再次进入模型测试,查看他本身的模型训练效果怎么样:
from sklearn import metrics
train_predict = lr_model.predict(fin_train)
print(metrics.classification_report(train_y,train_predict))  #查看混淆矩阵
-------------------------------precision    recall  f1-score   support0       0.99      1.00      0.99       2501       0.98      1.00      0.99       2502       1.00      0.98      0.99       2503       0.98      0.98      0.98       2504       1.00      1.00      1.00       2505       0.98      0.98      0.98       2506       0.99      1.00      1.00       2507       0.98      0.99      0.98       2508       0.98      0.99      0.99       2509       0.99      0.97      0.98       250accuracy                           0.99      2500macro avg       0.99      0.99      0.99      2500
weighted avg       0.99      0.99      0.99      2500
  1. 再用分割的测试集来测试模型:
test_predict = lr_model.predict(fin_test)
print(metrics.classification_report(test_y,test_predict))
---------------------------precision    recall  f1-score   support0       0.95      0.96      0.95       2501       0.94      0.96      0.95       2502       0.88      0.86      0.87       2503       0.90      0.86      0.88       2504       0.92      0.84      0.88       2505       0.84      0.90      0.87       2506       0.92      0.95      0.93       2507       0.89      0.93      0.91       2508       0.89      0.84      0.86       2509       0.83      0.86      0.85       250accuracy                           0.90      2500macro avg       0.90      0.90      0.89      2500
weighted avg       0.90      0.90      0.89      2500

到这为止!!我们就训练好一个关于手写数字识别的逻辑回归模型啦!!

总结

本篇介绍了如何用逻辑回归算法实现手写数字识别:

  1. 逻辑回归更适合二分类算法,但是也可以通过一些策略,扩展到多分类问题。
  2. 注意要将读取的数据进行标准化操作,灰度图图片数据相差过大。
  3. 学会调整参数,优化模型,比如本篇在交叉验证中找寻最优的惩罚因子。

这篇关于亦菲喊你来学机器学习(9) --逻辑回归实现手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099719

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S