caffe - - 在windows上实施 前向

2024-08-23 13:58
文章标签 windows 实施 caffe 前向

本文主要是介绍caffe - - 在windows上实施 前向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

caffe-window搭建自己的小项目例子

           手头有一个实际的视觉检测的项目,用的是caffe来分类,于是需要用caffe新建自己的项目的例子。在网上找了好久都没有找到合适的,于是自己开始弄。

1 首先是配置caffe的VC++目录中的include和库文件。配置include lib dll都是坑,而且还分debug和release两个版本。添加输入项目需要注意,而且需要把编译好的caffe.lib等等一系列东西拷贝到当前项目下。也就是caffe bulid文件夹下面的东西,包括caffe.lib 、libcaffe.lib、还有很多dll.

这个是debug_include配置图

这个是debug_lib配置图

这个是release_include配置图

这个是release_lib配置图

同时也需要在,项目属性页的链接器输入中,填写相应的lib,其中debug和release是不同的。以下是需要填写的相应lib

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
//debug
opencv_calib3d2413d.lib
opencv_contrib2413d.lib
opencv_core2413d.lib
opencv_features2d2413d.lib
opencv_flann2413d.lib
opencv_gpu2413d.lib
opencv_highgui2413d.lib
opencv_imgproc2413d.lib
opencv_legacy2413d.lib
opencv_ml2413d.lib
opencv_objdetect2413d.lib
opencv_ts2413d.lib
opencv_video2413d.lib
caffe.lib
libcaffe.lib
cudart.lib
cublas.lib
curand.lib
gflagsd.lib
libglog.lib
libopenblas.dll.a
libprotobuf.lib
leveldb.lib
hdf5.lib
hdf5_hl.lib
Shlwapi.lib
//release
opencv_calib3d2413.lib
opencv_contrib2413.lib
opencv_core2413.lib
opencv_features2d2413.lib
opencv_flann2413.lib
opencv_gpu2413.lib
opencv_highgui2413.lib
opencv_imgproc2413.lib
opencv_legacy2413.lib
opencv_ml2413.lib
opencv_objdetect2413.lib
opencv_ts2413.lib
opencv_video2413.lib
caffe.lib
libcaffe.lib
cudart.lib
cublas.lib
curand.lib
gflags.lib
libglog.lib
libopenblas.dll.a
libprotobuf.lib
leveldb.lib
lmdb.lib
hdf5.lib
hdf5_hl.lib
Shlwapi.lib

 2 新建一个Classifier的c++类,其中头文件为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "stdafx.h"
#include <caffe caffe.hpp="">
#include <opencv2 core="" core.hpp="">
#include <opencv2 highgui="" highgui.hpp="">
#include <opencv2 imgproc="" imgproc.hpp="">
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#pragma once
using  namespace  caffe;   // NOLINT(build/namespaces)
using  std::string;
//using namespace boost; 注意不需要添加这个
/* Pair (label, confidence) representing a prediction. */
typedef  std::pair<string,  float = "" > Prediction;
class  Classifier
{
public :
     Classifier( const  string& model_file,
         const  string& trained_file,
         const  string& mean_file,
         const  string& label_file);
     std::vector<prediction> Classify( const  cv::Mat& img,  int  N = 5);
     ~Classifier();
private :
     void  SetMean( const  string& mean_file);
     std::vector< float > Predict( const  cv::Mat& img);
     void  WrapInputLayer(std::vector<cv::mat>* input_channels);
     void  Preprocess( const  cv::Mat& img,
         std::vector<cv::mat>* input_channels);
private :
     boost::shared_ptr<net< float > > net_;
     cv::Size input_geometry_;
     int  num_channels_;
     cv::Mat mean_;
     std::vector<string> labels_;
};
</string></net< float ></cv::mat></cv::mat></ float ></prediction></string,></vector></utility></string></memory></iosfwd></algorithm></opencv2></opencv2></opencv2></caffe>

  c++文件为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "stdafx.h"
#include "Classifier.h"
Classifier::Classifier( const  string& model_file,
     const  string& trained_file,
     const  string& mean_file,
     const  string& label_file) {
#ifdef CPU_ONLY
     Caffe::set_mode(Caffe::CPU);
#else
     Caffe::set_mode(Caffe::GPU);
#endif
     /* Load the network. */
     net_.reset( new  Net< float >(model_file, TEST));
     net_->CopyTrainedLayersFrom(trained_file);
     CHECK_EQ(net_->num_inputs(), 1) <<  "Network should have exactly one input." ;
     CHECK_EQ(net_->num_outputs(), 1) <<  "Network should have exactly one output." ;
     Blob< float >* input_layer = net_->input_blobs()[0];
     num_channels_ = input_layer->channels();
     CHECK(num_channels_ == 3 || num_channels_ == 1)
         <<  "Input layer should have 1 or 3 channels." ;
     input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
     /* Load the binaryproto mean file. */
     SetMean(mean_file);
     /* Load labels. */
     std::ifstream labels(label_file.c_str());
     CHECK(labels) <<  "Unable to open labels file "  << label_file;
     string line;
     while  (std::getline(labels, line))
         labels_.push_back(string(line));
     Blob< float >* output_layer = net_->output_blobs()[0];
     CHECK_EQ(labels_.size(), output_layer->channels())
         <<  "Number of labels is different from the output layer dimension." ;
}
static  bool  PairCompare( const  std::pair< float int >& lhs,
     const  std::pair< float int >& rhs) {
     return  lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static  std::vector< int > Argmax( const  std::vector< float >& v,  int  N) {
     std::vector<std::pair< float int > > pairs;
     for  ( size_t  i = 0; i < v.size(); ++i)
         pairs.push_back(std::make_pair(v[i],  static_cast < int >(i)));
     std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
     std::vector< int > result;
     for  ( int  i = 0; i < N; ++i)
         result.push_back(pairs[i].second);
     return  result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify( const  cv::Mat& img,  int  N) {
     std::vector< float > output = Predict(img);
     N = std::min< int >(labels_.size(), N);
     std::vector< int > maxN = Argmax(output, N);
     std::vector<Prediction> predictions;
     for  ( int  i = 0; i < N; ++i) {
         int  idx = maxN[i];
         predictions.push_back(std::make_pair(labels_[idx], output[idx]));
     }
     return  predictions;
}
/* Load the mean file in binaryproto format. */
void  Classifier::SetMean( const  string& mean_file) {
     BlobProto blob_proto;
     ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
     /* Convert from BlobProto to Blob<float> */
     Blob< float > mean_blob;
     mean_blob.FromProto(blob_proto);
     CHECK_EQ(mean_blob.channels(), num_channels_)
         <<  "Number of channels of mean file doesn't match input layer." ;
     /* The format of the mean file is planar 32-bit float BGR or grayscale. */
     std::vector<cv::Mat> channels;
     float * data = mean_blob.mutable_cpu_data();
     for  ( int  i = 0; i < num_channels_; ++i) {
         /* Extract an individual channel. */
         cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
         channels.push_back(channel);
         data += mean_blob.height() * mean_blob.width();
     }
     /* Merge the separate channels into a single image. */
     cv::Mat mean;
     cv::merge(channels, mean);
     /* Compute the global mean pixel value and create a mean image
     * filled with this value. */
     cv::Scalar channel_mean = cv::mean(mean);
     mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector< float > Classifier::Predict( const  cv::Mat& img) {
     Blob< float >* input_layer = net_->input_blobs()[0];
     input_layer->Reshape(1, num_channels_,
         input_geometry_.height, input_geometry_.width);
     /* Forward dimension change to all layers. */
     net_->Reshape();
     std::vector<cv::Mat> input_channels;
     WrapInputLayer(&input_channels);
     Preprocess(img, &input_channels);
     net_->Forward();
     /* Copy the output layer to a std::vector */
     Blob< float >* output_layer = net_->output_blobs()[0];
     const  float * begin = output_layer->cpu_data();
     const  float * end = begin + output_layer->channels();
     return  std::vector< float >(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void  Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
     Blob< float >* input_layer = net_->input_blobs()[0];
     int  width = input_layer->width();
     int  height = input_layer->height();
     float * input_data = input_layer->mutable_cpu_data();
     for  ( int  i = 0; i < input_layer->channels(); ++i) {
         cv::Mat channel(height, width, CV_32FC1, input_data);
         input_channels->push_back(channel);
         input_data += width * height;
     }
}
void  Classifier::Preprocess( const  cv::Mat& img,
     std::vector<cv::Mat>* input_channels) {
     /* Convert the input image to the input image format of the network. */
     cv::Mat sample;
     if  (img.channels() == 3 && num_channels_ == 1)
         cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
     else  if  (img.channels() == 4 && num_channels_ == 1)
         cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
     else  if  (img.channels() == 4 && num_channels_ == 3)
         cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
     else  if  (img.channels() == 1 && num_channels_ == 3)
         cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
     else
         sample = img;
     cv::Mat sample_resized;
     if  (sample.size() != input_geometry_)
         cv::resize(sample, sample_resized, input_geometry_);
     else
         sample_resized = sample;
     cv::Mat sample_float;
     if  (num_channels_ == 3)
         sample_resized.convertTo(sample_float, CV_32FC3);
     else
         sample_resized.convertTo(sample_float, CV_32FC1);
     cv::Mat sample_normalized;
     cv::subtract(sample_float, mean_, sample_normalized);
     /* This operation will write the separate BGR planes directly to the
     * input layer of the network because it is wrapped by the cv::Mat
     * objects in input_channels. */
     cv::split(sample_normalized, *input_channels);
     CHECK( reinterpret_cast < float *>(input_channels->at(0).data)
         == net_->input_blobs()[0]->cpu_data())
         <<  "Input channels are not wrapping the input layer of the network." ;
}
Classifier::~Classifier()
{
}

  c++,文件来自于\caffe-master\examples\cpp_classification中的classification.cpp文件

3 直接编译后会出现的问题是F0519 14:54:12.494139 14504 layer_factory.hpp:77] Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input ),百度后发现是要加头文件!http://blog.csdn.net/fangjin_kl/article/details/50936952#0-tsina-1-63793-397232819ff9a47a7b7e80a40613cfe1

因此安装上面说的新建一个head.h    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "caffe/common.hpp"
#include "caffe/layers/input_layer.hpp"
#include "caffe/layers/inner_product_layer.hpp"
#include "caffe/layers/dropout_layer.hpp"
#include "caffe/layers/conv_layer.hpp"
#include "caffe/layers/relu_layer.hpp"
#include "caffe/layers/pooling_layer.hpp"
#include "caffe/layers/lrn_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"
namespace  caffe
{
     extern  INSTANTIATE_CLASS(InputLayer);
     extern  INSTANTIATE_CLASS(InnerProductLayer);
     extern  INSTANTIATE_CLASS(DropoutLayer);
     extern  INSTANTIATE_CLASS(ConvolutionLayer);
     REGISTER_LAYER_CLASS(Convolution);
     extern  INSTANTIATE_CLASS(ReLULayer);
     REGISTER_LAYER_CLASS(ReLU);
     extern  INSTANTIATE_CLASS(PoolingLayer);
     REGISTER_LAYER_CLASS(Pooling);
     extern  INSTANTIATE_CLASS(LRNLayer);
     REGISTER_LAYER_CLASS(LRN);
     extern  INSTANTIATE_CLASS(SoftmaxLayer);
     REGISTER_LAYER_CLASS(Softmax);
}

注意上述网络可能不全,需要根据实际的网络添加层。参考

 

  View Code

 

 

 

4 出现的第二个问题是有些符号GLOG_NO_ABBREVIATED_SEVERITIES未定义,因此在项目属性页 c++预处理器中添加下面两个:

GLOG_NO_ABBREVIATED_SEVERITIES
_SCL_SECURE_NO_WARNINGS

5 同时需要把

#include <caffe/proto/caffe.pb.h>
#include "head.h"

这两个头文件放到stdafx.h中,必须放到里面。

6 编译通过后,编写测试分类的程序,首先加载caffermodle.

string model_file = "D:\\caffe\\caffe-master\\mypower\\deploy.prototxt";//prototxt 这个必须是depoly,这个是计算输出的类别概率
string trained_file = "D:\\caffe\\caffe-master\\mypower_iter_2000.caffemodel"; //这个是训练好的model
string mean_file = "D:\\caffe\\caffe-master\\mypower\\imagenet_mean.binaryproto";//这个是均值文件
string label_file ="D:\\caffe\\caffe-master\\mypower\\label.txt"; //这个是样本标签 ,如果两类,可以新建一个txt文件,里面写作如下

1
2
0 good
1 bad

定义一个指针  Classifier *classifier;
classifier = new Classifier(model_file, trained_file, mean_file, label_file);

 分类程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
cv::Mat img(roiimage, 0); //加载图像
  //CHECK(!img.empty()) << "Unable to decode image " ;
  std::vector<Prediction> predictions = classifier->Classify(img);
  /* Print the top N predictions. */
  string precision_p0= "" ;
  for  ( size_t  i = 0; i < predictions.size()-1; ++i) //只输出了概率最大的那一类,通常就是第一类
  {
   Prediction p = predictions[i];
   precision_p0 = p.first;
   std::cout << std::fixed << std::setprecision(4) << p.second <<  " - \""
   << p.first <<  "\""  << std::endl;<br>   }
  char  firstc = precision_p0[0];
  if  (firstc ==  '0' ) //第一类正样本 好的<br>   {
   //AfxMessageBox("good");           
  }
  else  //第二类负样本 存在缺陷
  {
   //AfxMessageBox("bad");        
}

这篇关于caffe - - 在windows上实施 前向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099572

相关文章

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Python+Tkinter实现Windows Hosts文件编辑管理工具

《Python+Tkinter实现WindowsHosts文件编辑管理工具》在日常开发和网络调试或科学上网场景中,Hosts文件修改是每个开发者都绕不开的必修课,本文将完整解析一个基于Python... 目录一、前言:为什么我们需要专业的Hosts管理工具二、工具核心功能全景图2.1 基础功能模块2.2 进

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.