5步掌握Python Django+Vue二手房项目,实现房价预测与知识图谱系统

本文主要是介绍5步掌握Python Django+Vue二手房项目,实现房价预测与知识图谱系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍊作者:计算机毕设匠心工作室
🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。
擅长:按照需求定制化开发项目、 源码、对代码进行完整讲解、文档撰写、ppt制作。
🍊心愿:点赞 👍 收藏 ⭐评论 📝
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
Java实战项目
Python实战项目
微信小程序|安卓实战项目
大数据实战项目
PHP|C#.NET|Golang实战项目
🍅 ↓↓文末获取源码联系↓↓🍅

这里写目录标题

  • 房价预测与知识图谱-选题背景
  • 房价预测与知识图谱-技术选型
  • 房价预测与知识图谱-视频展示
  • 房价预测与知识图谱-图片展示
  • 房价预测与知识图谱-代码展示
  • 房价预测与知识图谱-文档展示
  • 房价预测与知识图谱-结语

房价预测与知识图谱-选题背景

随着房地产市场的快速发展,二手房交易逐渐成为市场的重要部分。然而,二手房市场的信息不对称、价格波动大等问题,使得购房者难以做出明智的决策。在这样的市场背景下,二手房项目的房价预测和知识图谱构建显得尤为重要。课题的必要性在于,通过技术手段为购房者提供准确的市场预测和全面的信息图谱,能够有效降低购房风险,提高市场透明度。

当前,虽然市场上存在多种房价预测工具和信息展示平台,但它们普遍存在数据更新不及时、预测模型不准确、信息展示不全面等问题。这些问题导致购房者无法获得有效的决策支持,甚至可能造成经济损失。因此,本课题旨在通过Python Django+Vue技术构建一个二手房项目,实现更为精准的房价预测和更为全面的知识图谱展示,以解决现有解决方案的不足,为购房者提供更为可靠的信息服务。

在理论意义上,本课题将探索数据挖掘、机器学习在房地产领域的应用,为相关研究提供新的视角和方法。在实际意义上,课题成果将帮助购房者更好地理解市场动态,预测房价走势,从而做出更合理的购房决策。此外,对于房地产中介和开发商而言,课题的研究成果也能为其市场策略提供数据支持,促进整个行业的健康发展。

房价预测与知识图谱-技术选型

数据库:MySQL
系统架构:B/S
后端框架:Django
前端:Vue+ElementUI
开发工具:PyCharm

房价预测与知识图谱-视频展示

5步掌握Python Django+Vue二手房项目,实现房价预测与知识图谱

房价预测与知识图谱-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

房价预测与知识图谱-代码展示

# Django项目中的 views.py 文件from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from sklearn.externals import joblib  # sklearn版本需小于0.23
import numpy as np# 假设我们已经有了一个训练好的房价预测模型,并保存为model.pkl
MODEL_PATH = 'path/to/your/model.pkl'
model = joblib.load(MODEL_PATH)@csrf_exempt
def predict_price(request):if request.method == 'POST':# 获取前端发送的房源特征数据data = request.POST.dict()features = np.array([data['bedrooms'],  # 卧室数量data['bathrooms'],  # 浴室数量data['sqft_living'],  # 居住面积data['sqft_lot'],  # 土地面积data['floors'],  # 楼层数data['grade'],  # 房屋等级data['yr_built'],  # 建筑年份]).reshape(1, -1)  # 调整形状以匹配模型输入# 使用模型进行房价预测predicted_price = model.predict(features)# 返回预测结果return JsonResponse({'predicted_price': predicted_price[0]}, safe=False)else:return JsonResponse({'error': 'Invalid request'}, status=400)# 在 urls.py 中添加以下路由
# from django.urls import path
# from . import views# urlpatterns = [
#     path('predict_price/', views.predict_price, name='predict_price'),
# ]

房价预测与知识图谱-文档展示

在这里插入图片描述

房价预测与知识图谱-结语

如果你也对二手房市场的房价预测和信息图谱构建感兴趣,那么这个项目绝对不容错过!通过本视频,我们不仅学习了如何用Python Django+Vue构建二手房项目,还掌握了实现房价预测与知识图谱的关键技术。如果你有任何疑问或想法,欢迎在评论区留言交流。同时,别忘了点赞、关注并分享,一键三连支持我们,让更多的小伙伴看到这个精彩的项目!你的支持是我们不断前进的动力,感谢观看。

👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
Java实战项目
Python实战项目
微信小程序|安卓实战项目
大数据实战项目
PHP|C#.NET|Golang实战项目
🍅 主页获取源码联系🍅

这篇关于5步掌握Python Django+Vue二手房项目,实现房价预测与知识图谱系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1098815

相关文章

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat