P(查准率) R(查全率) AP mAP最通俗准确的讲解

2024-08-23 06:52

本文主要是介绍P(查准率) R(查全率) AP mAP最通俗准确的讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习YOLO的过程中遇到了mAP指标,在网上看了很多关于mAP的讲解,不是很理解其计算过程,于是总结了各个帖子及自己的理解,给出mAP计算的规律,这样就能很好的记忆。

目录

一、P(精确率)、R(召回率)和F1 Score

二、PR曲线

三、AP和mAP

一、P(精确率)、R(召回率)和F1 Score

  • True Positive(TP): 预测了。预测为正,实际为正。

  • False Negative(FN):预测了。 预测为负,实际为正。

  • False Positive(FP): 预测了。预测为正,实际为负。

  • True Negative(TN): 预测了。预测为负,实际为负。(在目标检测问题中,由于模型通常不会明确标记非目标的所有背景区域,所以通常不会计算TN

有T就是对,有F就是错。

P: Precision,精确率,也叫查准率。预测为正类的样本中确实为正类的比例。

R:Recall,召回率,也叫查全率。所有实际正类中,有多少正类被预测出来。

F1 Score:是精确率和召回率的调和平均数,是一种兼顾精确率和召回率的综合指标。

举个例子:一张图片中总共有10只猫咪,模型显示检测到了5只猫咪,但是检测到的其中只有4个是猫咪,另外一只实际上是小狗。
此时TP=4(检测到的4只猫咪是真猫咪),FN=6(没能检测到剩下的真实的6只猫咪), FP=1(误将1只小狗检测成小猫)。

此时P = 4/5 = 0.8,R = 4/10 = 0.6,F1 Score = 2X(0.8X0.6)/(0.8+0.6) = 0.686。

一般来说,P 和 R 是相互制约的,一个越高另一个就越低。
因为查准率只关注预测出的正类中有多少是真的,而查全率关注实际上所有的正类中模型检测出来多少。如果我的模型只关注查全率不关注查准率,我将所有物体都识别为正类,那么确实所有小猫都检测到了,但是不准确。

二、PR曲线

当你训练好一个分类算法后,它会对每个输入样本给出一个置信度评分,这个评分表示该样本是正类的概率。例如,算法认为样本A有99%的可能性是正类,而样本B只有1%的可能性是正类。

我们设定一个阈值,比如50%,来决定哪个样本被划分为正类,哪个样本被划分为负类。如果一个样本的置信度评分超过50%,我们就把它看作是正类;如果低于50%,则视为负类。

然后,可以按照置信度评分对所有样本进行排序。从置信度最高的样本开始,每次选取一个样本作为新的阈值。例如,首先选择置信度最高的样本A作为阈值,那么所有比样本A置信度高的样本都被认为是正类,其他样本则是负类。接着,计算当前状态下模型的精确率和召回率。

接着,继续选择下一个置信度稍低的样本B作为阈值,再次计算精确率和召回率。重复这个过程,直到遍历完所有样本。这样,就得到了一系列的精确率和召回率值,每个值对应着一个不同的阈值。

最后,把这些精确率和召回率值连接起来,就形成了一个 PR 曲线。这条曲线显示了随着阈值的变化,模型的精确率和召回率是如何变化的。

随着阈值的下降,recall值是递增的(但并非严格递增),因为实际为正类的对象会越来越多的被检测为正类,不会减少。而精确率precision并非递减,而是有可能振荡的,虽然正例被判为正例的变多,但负例被判为正例的也变多了,因此precision会振荡,但整体趋势是下降。

三、AP和mAP

虽然 PR 曲线提供了关于模型性能的直观信息,但它并没有提供一个单一的数值来概括整个曲线的表现。

平均精度(Average Precision, AP)平均精度是一种统计量,AP 是 PR 曲线上各点的精确率的平均值,每个精确率值乘以其对应的召回率的增量。。

口语化解释就是:
通过选取每个recall及其对应的precision,绘制出PR曲线。然后,对于每个recall值,计算下一个recall与当前recall之间的差值,并乘以从当前recall到之后的所有recall对应的最大precision值。重复这一过程直到遍历所有recall值,将这些值相加就得到了某个类别的AP (Average Precision)。(recall相同的点去precision最高的点)

举个图中特殊的点(框起来那个),此时下一个recall为0.71,当前recall为0.57,从当前recall开始(包括当前recall)一直到最后的recall中对应的precision最高为0.71,所以为(0.71-0.57)*0.71。

mAP:得到了不同类别的AP,取这些AP的平均值就是mAP。

这篇关于P(查准率) R(查全率) AP mAP最通俗准确的讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1098661

相关文章

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.