MambaCSR: 使用SSM的双交错扫描压缩图像超分辨率

2024-08-23 06:44

本文主要是介绍MambaCSR: 使用SSM的双交错扫描压缩图像超分辨率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MambaCSR: Dual-Interleaved Scanning for Compressed Image Super-Resolution With SSMs

2408.11758 (arxiv.org)

GitHub - renyulin-f/MambaCSR: The code source of MambaCSR

摘要

本文提出了MambaCSR,这是一个基于Mamba的简单但有效的框架,用于解决具有挑战性的压缩图像超分辨率(CSR)任务。

尽管Mamba依赖于对所有标记的选择性状态空间建模,但其扫描策略在恢复过程中的有效上下文知识建模方面至关重要。

本文为CSR提出了一种高效的双交错扫描范式(DIS),该范式由两种扫描策略组成:

(i)层次交错扫描,旨在通过同时利用基于局部窗口和顺序扫描的方法,全面捕获和利用图像中最潜在的上下文信息;

(ii)水平到垂直交错扫描,旨在通过减少不同方向扫描之间的冗余来降低计算成本。

为了克服非均匀压缩伪影,还提出了位置对齐的跨尺度扫描来建模多尺度上下文信息。

在多个基准测试上的实验结果表明,MambaCSR在压缩图像超分辨率任务中表现出色。

研究概述

压缩图像超分辨率(CSR)在工业应用和人类生活中逐渐成为一种高级任务,旨在同时去除由压缩和低分辨率造成的严重混合失真。与现有的单图像超分辨率(SISR)相比,CSR表现出更加不均匀和多样化的退化,包括块伪影、振铃效应、颜色漂移等,同时还伴随着关键信息的丢失。CSR的这些特点对现有超分辨率模型的上下文信息建模能力提出了重大挑战。

为了通过框架设计提高上下文建模能力,已经探索了一系列工作。常用的框架通常基于三种典型的网络,包括卷积神经网络(CNN)、Transformer和多层感知机(MLP)。特别是,CNN擅长捕获局部上下文信息,但需要通过增加网络深度来聚合全局上下文信息。相比之下,基于Transformer的工作利用自注意力机制为图像中的标记建立长距离上下文依赖关系,但这需要较大的计算成本。与上述工作不同,类似MLP的工作[25]放弃了复杂的注意力机制,并通过为标记混合器设计良好的策略来成功建模长距离上下文信息,从而显著降低了计算成本。尽管如此,基于Transformer的工作仍然是CSR任务的主流,并提供了最佳性能。这引发了一个关键问题:“是否存在一种新的框架能在CSR任务中超越Transformer的性能?

Mamba,该框架利用选择性状态空间模型(SSM),通过动态决定在扫描轨迹中为每个标记保留多少学习到的知识,从而在建模长距离上下文信息方面表现出色。随后,许多工作成功地将这一创新框架应用于各种视觉领域。得益于SSM的结构,Mamba的计算成本在理论上低于Transformer(O(n log(n)) vs O(n^2)),这缓解了Transformer在低级视觉中的基于窗口的表示学习所受到的限制。凭借上述优势,一些开创性工作已经探索了将Mamba框架应用于低级视觉任务。

然而,上述工作的扫描策略仍然遵循早期的VMamba[30],并依赖于如图1(a)所示的两个水平和垂直扫描轨迹来进行长距离依赖关系的建模,这往往忽略了局部依赖关系的探索。然而,在CSR任务的背景下,多样化和统一化的混合退化对挖掘同一图像内所有标记之间最具信息量的上下文信息提出了很高的要求。因此,对于CSR任务来说,局部依赖关系和长距离上下文信息都至关重要,这促使我们研究如何设计一种扫描策略,以实现Mamba中最全面的上下文建模。

本文提出了MambaCSR,这是第一个基于Mamba的CSR框架,旨在通过我们提出的双交错扫描(DIS)策略来激活Mamba的全面上下文建模能力。通常,如图1(b)所示的基于窗口的扫描已被证明对于Mamba捕获局部依赖关系是有效的。因此,DIS的分层交错扫描被设计为迭代地为MambaCSR应用基于窗口的扫描和基于序列的扫描,旨在同时挖掘局部和长距离的上下文信息。从另一个角度来看,原始的VMamba利用四种扫描轨迹(即两种水平和垂直扫描策略)进行上下文建模。然而,在每个操作的每个标记中,并非所有扫描轨迹都是必要或重要的,因此存在冗余。

为了降低计算成本,本文提出将四种扫描轨迹解耦,并在相邻层中迭代利用两种水平和垂直扫描轨迹,从而实现DIS的水平到垂直交错扫描。通过我们提出的双交错扫描范式,MambaCSR在CSR任务中展现出了出色的上下文建模能力和效率。

为了进一步克服CSR中的非均匀退化问题,为CSR引入了一种位置对齐的跨尺度扫描策略,旨在融合多尺度上下文信息,从而提高非均匀表示能力。值得注意的是,一种简单的方法是扫描降采样图像及其对应原始图像的特征。然而,这种方法忽略了不同尺度间的大多数相关上下文信息通常分布在同一区域。这促使本文首先跨尺度扫描相同位置的标记,然后一起移动两个尺度的扫描窗口。上述扫描策略进一步提高了MambaCSR对CSR中复杂退化的恢复能力。

贡献

1 提出了MambaCSR,这是第一个基于Mamba的CSR任务框架,它引入了双交错扫描(DIS)范式,旨在为MambaCSR激活更全面且高效的上下文信息建模。

2 为了实现DIS范式,提出了(i)分层交错扫描,以融合局部和长距离的上下文信息;(ii)水平到垂直的扫描,以减少不同标记上下文建模的计算冗余。

3 提出了位置对齐的跨尺度扫描策略,以融合多尺度上下文信息,从而消除CSR中的非均匀退化。

4 在各种压缩基准测试上的实验结果表明提出的MambaCSR具有有效性和高效性。

结果

这篇关于MambaCSR: 使用SSM的双交错扫描压缩图像超分辨率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098648

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数