零基础5分钟上手谷歌云GCP - 服务器自动扩展

2024-08-23 06:20

本文主要是介绍零基础5分钟上手谷歌云GCP - 服务器自动扩展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

欢迎来到小李哥谷歌云GCP云计算知识学习系列,适用于任何无云计算或者谷歌云技术背景的开发者,让大家零基础5分钟通过这篇文章就能完全学会谷歌云一个经典的服务开发架构方案。

我将每天介绍一个基于全球三大云计算平台(AWS, Azure, GCP)的全球前沿云开发/架构技术基础解决方案,帮助大家快速了解国际上最热门的云计算平台上的最佳实践和前沿技术,并应用到自己的日常工作里。本次我将介绍如何根据服务器Virtual Machine的监控参数,自动扩展谷歌云GCP上的服务器。监控方案架构图如下:

方案所需基础知识 

什么是 Compute Engine Managed Instance Group?

Compute Engine Managed Instance Group(MIG)是 Google Cloud 提供的一项服务,允许用户管理和自动化一组虚拟机实例的部署和生命周期。MIG 可以根据预定义的模板和策略自动创建、更新、删除和分配实例,确保应用程序始终拥有所需的计算资源。它还支持负载均衡、自动修复和滚动更新,帮助用户轻松管理大规模、分布式的计算环境。

为什么要对服务器设置自动扩展?

设置自动扩展(Auto Scaling)是为了确保服务器资源能够灵活应对应用程序的动态需求。以下是自动扩展的重要原因:

提高可用性和性能

当应用程序的流量或负载增加时,自动扩展可以立即启动更多服务器实例,以应对增加的需求,确保应用程序始终保持高性能和快速响应,避免因资源不足导致的性能瓶颈。

优化成本

自动扩展不仅能在高峰期自动增加资源,还能在低谷期减少不必要的实例,从而优化资源使用,避免浪费。这种按需扩展的模式帮助企业根据实际需求动态调整资源,降低运营成本。

增强弹性

自动扩展使得应用程序能够自动适应不同的工作负载,无需人为干预。无论是应对突发流量还是逐步增长的负载,自动扩展都能确保系统的稳定性和弹性,减少停机风险。

简化运维管理

自动扩展减少了运维团队的手动干预需求,避免了在流量变化时频繁调整资源配置的繁琐操作,使得系统管理更加高效和自动化。

本方案包括的内容

1. 创建一个用于服务器自动扩展的Compute Engine服务器托管组

2. 指定一个监控参数,用于触发服务器横向扩展

3. 在谷歌云控制台上查看服务器托管组中的监控参数和服务器个数

云资源监控具体步骤

1. 进入谷歌云控制台,创建一个Compute Engine Instance Template服务器创建模板,用于自动扩容的服务器配置。

2. 将该Template模板命名为”autoscaling-instance01“,并选择资源为”Global“类型。

3. 点击”Advanced options“,为服务器添加MetaData元数据,”startup-script-url:gs://[YOUR_BUCKET_NAME]/startup.sh“和”gcs-bucket:gs://[YOUR_BUCKET_NAME]“,用于从Cloud Storage中获取开机启动脚本。

4. 接下来我们创建一个Instance Group,统一批量管理VM服务器

5. 为Instance Group命名为”autoscaling-instance-group-1“, template选择我们刚创建的”autoscaling-instance01“,资源类型选择”Single Zone“。

6. 为Instance Group配置区域,并关闭自动扩展,最后点击Create创建。

7.此时我们回到Compute Engine服务器管理界面,可以看到Instance Group基于我们在第一步中的Template创建的新服务器”autoscaling-instance-group-1-5dgz“。

8. 接下来我们为instance groups配置自动扩展功能,回到instance groups界面,选中我们创建的”autoscaling-instance-group-1“,并点击Edit修改。

9. 我们将Autoscaling配置开启,设置扩展组的服务器个数范围为Min:1到Max:3,添加触发服务器自动扩展的指标”New Signal“,并选则”Cloud Monitoring metric new“,再点击Configre。

10.  点击”Select Metric“选择触发服务器扩展的指标,在搜索栏中搜索自定义指标”appdemo_queue_depth_01“,该指标将监控服务器内的queue中的请求个数,选中该指标后点击Apply确认。

 11. 接下来我们设置触发服务器扩展的指标阈值,我们将阈值设置为150,再选择阈值类型“Gauge”,表示扩展组将计算过去几分钟内的均值,再与150做对比,若大于150则触发扩展。设置完成后点击Save即可完成扩展组配置。

如何用Python SDK创建一个Instance Groups自动扩展组

以下是示例代码:

from google.cloud import compute_v1
from google.protobuf import duration_pb2# 配置参数
project_id = "your-project-id"  # 替换为你的GCP项目ID
zone = "us-central1-a"  # 替换为你希望部署实例的区域
instance_group_name = "example-instance-group"  # 实例组名称
template_name = "your-instance-template"  # 替换为你创建的实例模板名称
target_pool = None  # 如果你有目标池,指定名称,否则设置为None# 创建实例组管理器
def create_instance_group_manager():instance_group_manager_client = compute_v1.InstanceGroupManagersClient()instance_group_manager = compute_v1.InstanceGroupManager(name=instance_group_name,instance_template=f"global/instanceTemplates/{template_name}",target_size=1,  # 初始实例数量base_instance_name="example-instance",zone=zone,target_pools=[f"projects/{project_id}/regions/{zone[:-2]}/targetPools/{target_pool}"] if target_pool else None,)operation = instance_group_manager_client.insert_unary(project=project_id, zone=zone, instance_group_manager_resource=instance_group_manager)operation.result()# 设置自动扩展策略
def set_autoscaler():autoscaler_client = compute_v1.AutoscalersClient()scaling_policy = compute_v1.AutoscalingPolicy(cpu_utilization=compute_v1.AutoscalingPolicyCpuUtilization(utilization_target=0.7  # 70%的CPU使用率),max_num_replicas=3,  # 最大实例数min_num_replicas=1,  # 最小实例数cool_down_period_sec=60,  # 冷却时间(秒))autoscaler = compute_v1.Autoscaler(name=f"{instance_group_name}-autoscaler",target=f"projects/{project_id}/zones/{zone}/instanceGroupManagers/{instance_group_name}",autoscaling_policy=scaling_policy,zone=zone,)operation = autoscaler_client.insert_unary(project=project_id, zone=zone, autoscaler_resource=autoscaler)operation.result()# 创建实例组管理器并设置自动扩展
create_instance_group_manager()
set_autoscaler()print("Instance group and autoscaler created successfully.")

代码解释

  • 实例组管理器: create_instance_group_manager() 函数用于创建一个新的实例组管理器(Instance Group Manager),它使用一个现有的实例模板来创建和管理实例。

  • 自动扩展策略: set_autoscaler() 函数为实例组配置自动扩展策略。当CPU使用率超过70%时,自动扩展策略将增加实例数量,最多扩展至3个实例。当负载降低时,实例数量会减少到最小1个实例。

  • 冷却时间: cool_down_period_sec 用于指定每次扩展或缩减操作后的冷却时间,以避免频繁的扩展和缩减操作。

以上就是在谷歌云GCP上对云资源监控并根据监控参数自动扩展服务器的全部步骤。欢迎大家关注零基础5分钟上手谷歌云系列,未来获取更多国际前沿的谷歌云GCP云开发/云架构方案!

这篇关于零基础5分钟上手谷歌云GCP - 服务器自动扩展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098598

相关文章

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析