LeetCode 3143. 正方形中的最多点数【位运算,构造法】中等【C++,Java,Py3,Go,Rust】

2024-08-23 05:28

本文主要是介绍LeetCode 3143. 正方形中的最多点数【位运算,构造法】中等【C++,Java,Py3,Go,Rust】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你两个整数 n 和 x 。你需要构造一个长度为 n 的 正整数 数组 nums ,对于所有 0 <= i < n - 1 ,满足 nums[i + 1] 大于 nums[i] ,并且数组 nums 中所有元素的按位 AND 运算结果为 x 。

返回 nums[n - 1] 可能的 最小 值。

示例 1:

输入:n = 3, x = 4
输出:6
解释:
数组 `nums` 可以是 `[4,5,6]` ,最后一个元素为 `6` 。

示例 2:

输入:n = 2, x = 7
输出:15
解释:
数组 `nums` 可以是 `[7,15]` ,最后一个元素为 `15` 。

提示:

  • 1 <= n, x <= 10^8

方法:位运算,两种简洁解法

从集合的视角看, x x x 是每个 n u m s [ i ] nums[i] nums[i]子集。换句话说, n u m s [ i ] nums[i] nums[i] 一定是 x x x超集。例如 x = 100100 x=100100 x=100100 ,那么 n u m s [ i ] nums[i] nums[i] 一定在如下序列中:
1 00 ‾ 1 00 ‾ , 1 00 ‾ 1 01 ‾ , 1 00 ‾ 1 10 ‾ , 1 00 ‾ 1 11 ‾ , 1 01 ‾ 1 00 ‾ , 1 01 ‾ 1 01 ‾ , … 1\underline{00}1\underline{00}, 1\underline{00}1\underline{01}, 1\underline{00}1\underline{10}, 1\underline{00}1\underline{11}, 1\underline{01}1\underline{00}, 1\underline{01}1\underline{01},\ \dots 100100,100101,100110,100111,101100,101101, 

只看下划线上的数,是一个自然数序列
0000 , 0001 , 0010 , 0011 , 0100 , 0101 , ⋯ 0000,0001,0010,0011,0100,0101,⋯ 0000,0001,0010,0011,0100,0101,
为了让 n u m s [ n − 1 ] nums[n−1] nums[n1] 尽量小,我们应当选择 x x x 的超集中最小的 n n n 个数

所以 x x x 的二进制中的 0 0 0 视作「空位」,往空位上填入 n − 1 n−1 n1 ,即为最小 n u m s [ n − 1 ] nums[n−1] nums[n1] 。如果空位不足,往 x x x 的前面添加前导零即可。

class Solution:def minEnd(self, n: int, x: int) -> int:n -= 1  # 先把 n 减一,这样下面讨论的 n 就是原来的 n-1i = j = 0while n >> j:# x 的第 i 个比特值是 0,即「空位」if (x >> i & 1) == 0:# 空位填入 n 的第 j 个比特值x |= (n >> j & 1) << ij += 1i += 1return x
class Solution {public long minEnd(int n, int x) {n--; // 先把 n 减一,这样下面讨论的 n 就是原来的 n-1long ans = x;int i = 0, j = 0;while ((n >> j) > 0) {// x 的第 i 个比特值是 0,即「空位」if ((ans >> i & 1) == 0) {// 空位填入 n 的第 j 个比特值ans |= (long) (n >> j & 1) << i;j++;}i++;}return ans;}
}
class Solution {
public:long long minEnd(int n, int x) {n--; // 先把 n 减一,这样下面讨论的 n 就是原来的 n-1long long ans = x;int i = 0, j = 0;while (n >> j) {// x 的第 i 个比特值是 0,即「空位」if ((ans >> i & 1) == 0) {// 空位填入 n 的第 j 个比特值ans |= (long long) (n >> j & 1) << i;j++;}i++;}return ans;}
};
func minEnd(n, x int) int64 {n-- // 先把 n 减一,这样下面讨论的 n 就是原来的 n-1i, j := 0, 0for n>>j > 0 {// x 的第 i 个比特值是 0,即「空位」if x>>i&1 == 0 {// 空位填入 n 的第 j 个比特值x |= n >> j & 1 << ij++}i++}return int64(x)
}
impl Solution {pub fn min_end(n: i32, x: i32) -> i64 {let mut tn: i64 = n as i64 - 1;let mut tx: i64 = x as i64;let mut i: i64 = 0;let mut j: i64 = 0;while tn >> j != 0 {if (tx >> i & 1) == 0 {tx |= (tn >> j & 1) << i;j += 1;}i += 1;}tx}
}

复杂度分析

  • 时间复杂度: O ( log ⁡ x + log ⁡ n ) O(\log x+\log n) O(logx+logn)
  • 空间复杂度: O ( 1 ) O(1) O(1)

优化:把 x x x 取反,用 l o w b i t lowbit lowbit 枚举其中的 1 1 1 的值,就是要填的空位。

class Solution:def minEnd(self, n: int, x: int) -> int:n -= 1j = 0t = ~xwhile n >> j:lb = t & -tx |= (n >> j & 1) * lbj += 1t ^= lbreturn x
class Solution {
public:long long minEnd(int n, int x) {n--;long long ans = x;int j = 0;for (long long t = ~x, lb; n >> j; t ^= lb) {lb = t & -t;ans |= (long long) (n >> j++ & 1) * lb;}return ans;}
};
class Solution {public long minEnd(int n, int x) {n--;long ans = x;int j = 0;for (long t = ~x, lb; (n >> j) > 0; t ^= lb) {lb = t & -t;ans |= (long) (n >> j++ & 1) * lb;}return ans;}
}
func minEnd(n, x int) int64 {n--j := 0for t, lb := ^x, 0; n>>j > 0; t ^= lb {lb = t & -tx |= n >> j & 1 * lbj++}return int64(x)
}

复杂度分析

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn) 。循环次数只和入参 n n n 有关。
  • 空间复杂度: O ( 1 ) O(1) O(1)

更快的做法?《Hacker’s Delight》第 7.5 节。

思考题
额外输入一个 f o r b i d d e n forbidden forbidden 数组,表示禁止出现在 n u m s nums nums 中的数。在这种额外约束下, n u m s [ n − 1 ] nums[n−1] nums[n1] 的最小值是多少?
答:出现在 nums 中的数无疑能满足相与后为 x x x禁止的这些数相与也是 x x x ,禁止这些数出现后还要相与为 x x x 。因此先剥离出 f o r b i d d e n forbidden forbidden 数组中每个数出现在【 x x x 0 0 0 位】上的值组成新数组,排序,遍历新数组,如果值小于 k k k(初始为 k = n − 1 k = n - 1 k=n1 ),则 k + + k++ k++ 。最后,往空位上填入 k k k

这篇关于LeetCode 3143. 正方形中的最多点数【位运算,构造法】中等【C++,Java,Py3,Go,Rust】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098472

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符