【OpenCV】 中使用 Lucas-Kanade 光流进行对象跟踪和路径映射

2024-08-23 04:52

本文主要是介绍【OpenCV】 中使用 Lucas-Kanade 光流进行对象跟踪和路径映射,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、说明
  • 二、什么是Lucas-Kanade 方法
  • 三、Lucas-Kanade 原理
  • 四、代码实现
    • 4.1 第 1 步:用户在第一帧绘制一个矩形
    • 4.2 第 2 步:从图像中提取关键点
    • 4.3 第 3 步:跟踪每一帧的关键点

一、说明

本文针对基于光流法的目标追踪进行叙述,首先介绍Lucas-Kanade 方法的引进,以及基本推导,然后演示如何实现光流法的运动跟踪。并以OpenCV实现一个基本项目。

二、什么是Lucas-Kanade 方法

在计算机视觉领域,Lucas-Kanade 方法是 Bruce D. Lucas 和Takeo Kanade开发的一种广泛使用的光流估计差分方法。该方法假设所考虑像素局部邻域中的光流基本恒定,并根据最小二乘准则求解该邻域中所有像素的基本光流方程。

通过结合来自多个邻近像素的信息,Lucas-Kanade 方法通常可以解决光流方程固有的模糊性。与逐点方法相比,该方法对图像噪声的敏感度也较低。另一方面,由于它是一种纯局部方法,因此无法提供图像均匀区域内部的流信息。

三、Lucas-Kanade 原理

在理论上,初始时间为 t 0 t_0 t0 时刻,经历过 Δ t \Delta t Δt时段后,点p会移动到另一个位置 p ′ p′ p ,并且 p ′ p′ p 本身和周围都有着与p相似的亮度值。朴素的LK光流法是直接用灰度值代替RGB作为亮度。根据上面的描述,对于点p而言,假设p 的坐标值是( x , y ),有
I ( x , y , t ) = I ( x + Δ x , y + Δ y , t + Δ t ) I(x, y, t) = I(x+\Delta x,y+\Delta y, t+\Delta t) I(x,y,t)=I(x+Δx,y+Δy,t+Δt)

根据泰勒公式:在这里把x 、y 看做是t 的函数,把公式(1)看做单变量t 的等式,只需对t进行展开)
I ( x , y , t ) = I ( x , y , t ) + ∂ I ∂ x ∂ x ∂ t + ∂ I ∂ y ∂ y ∂ t + ∂ I ∂ t + o ( Δ t ) I(x,y,t)=I(x,y,t)+\frac{∂I} {∂x}\frac{∂x}{∂t}+\frac{∂I} {∂y}\frac{∂y}{∂t}+\frac{∂I} {∂t}+o(Δt) I(x,y,t)=I(x,y,t)+xItx+yIty+tI+o(Δt)
对于一个像素区域:
I x ( q 1 ) V x + I y ( q 1 ) V x = − I t ( q 1 ) I x ( q 2 ) V x + I y ( q 2 ) V x = − I t ( q 2 ) . . . I x ( q n ) V x + I y ( q n ) V x = − I t ( q n ) I_x(q_1)V_x+I_y(q_1)V_x=-I_t(q_1)\\I_x(q_2)V_x+I_y(q_2)V_x=-I_t(q_2)\\...\\I_x(q_n)V_x+I_y(q_n)V_x=-I_t(q_n) Ix(q1)Vx+Iy(q1)Vx=It(q1)Ix(q2)Vx+Iy(q2)Vx=It(q2)...Ix(qn)Vx+Iy(qn)Vx=It(qn)

在这里: q 1 , q 2 , . . . q n q_1,q_2,...q_n q1,q2,...qn是窗口内点的标号, I x ( q i ) I_x(q_i) Ix(qi), I y ( q i ) I_y(q_i) Iy(qi), I t ( q i ) I_t(q_i) It(qi)是图像的灰度偏导数,
这些方程可以写成矩阵形式:
A v = b Av=b Av=b
在这里插入图片描述
这个系统的方程多于未知数,因此它通常是过度确定的。Lucas-Kanade方法通过最小二乘原理得到折衷解。也就是说,它解决了2×2系统:
在这里插入图片描述

在这里插入图片描述
因此
在这里插入图片描述

四、代码实现

4.1 第 1 步:用户在第一帧绘制一个矩形

# Path to video  
video_path="videos/bicycle1.mp4" 
video = cv2.VideoCapture(video_path)# read only the first frame for drawing a rectangle for the desired object
ret,frame = video.read()# I am giving  big random numbers for x_min and y_min because if you initialize them as zeros whatever coordinate you go minimum will be zero 
x_min,y_min,x_max,y_max=36000,36000,0,0def coordinat_chooser(event,x,y,flags,param):global go , x_min , y_min, x_max , y_max# when you click the right button, it will provide coordinates for variablesif event==cv2.EVENT_RBUTTONDOWN:# if current coordinate of x lower than the x_min it will be new x_min , same rules apply for y_min x_min=min(x,x_min) y_min=min(y,y_min)# if current coordinate of x higher than the x_max it will be new x_max , same rules apply for y_maxx_max=max(x,x_max)y_max=max(y,y_max)# draw rectanglecv2.rectangle(frame,(x_min,y_min),(x_max,y_max),(0,255,0),1)"""if you didn't like your rectangle (maybe if you made some misclicks),  reset the coordinates with the middle button of your mouseif you press the middle button of your mouse coordinates will reset and you can give a new 2-point pair for your rectangle"""if event==cv2.EVENT_MBUTTONDOWN:print("reset coordinate  data")x_min,y_min,x_max,y_max=36000,36000,0,0cv2.namedWindow('coordinate_screen')
# Set mouse handler for the specified window, in this case, "coordinate_screen" window
cv2.setMouseCallback('coordinate_screen',coordinat_chooser)while True:cv2.imshow("coordinate_screen",frame) # show only first frame k = cv2.waitKey(5) & 0xFF # after drawing rectangle press ESC   if k == 27:cv2.destroyAllWindows()breakcv2.destroyAllWindows()

4.2 第 2 步:从图像中提取关键点

# take region of interest ( take inside of rectangle )
roi_image=frame[y_min:y_max,x_min:x_max]# convert roi to grayscale
roi_gray=cv2.cvtColor(roi_image,cv2.COLOR_BGR2GRAY) # Params for corner detection
feature_params = dict(maxCorners=20,  # We want only one featurequalityLevel=0.2,  # Quality threshold minDistance=7,  # Max distance between corners, not important in this case because we only use 1 cornerblockSize=7)first_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)# Harris Corner detection
points = cv2.goodFeaturesToTrack(first_gray, mask=None, **feature_params)# Filter the detected points to find one within the bounding box
for point in points:x, y = point.ravel()if y_min <= y <= y_max and x_min <= x <= x_max:selected_point = pointbreak# If a point is found, convert it to the correct shape
if selected_point is not None:p0 = np.array([selected_point], dtype=np.float32)plt.imshow(roi_gray,cmap="gray")

将从此图像中提取关键点

4.3 第 3 步:跟踪每一帧的关键点

############################ Parameters ####################################""" 
winSize --> size of the search window at each pyramid level
Smaller windows can more precisely track small, detailed features -->   slow or subtle movements and where fine detail tracking is crucial.
Larger windows is better for larger displacements between frames ,  more robust to noise and small variations in pixel intensity --> require more computations
"""# Parameters for Lucas-Kanade optical flow
lk_params = dict(winSize=(7, 7),  # Window sizemaxLevel=2,  # Number of pyramid levelscriteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))############################ Algorithm ##################################### Read video
cap = cv2.VideoCapture(video_path)# Take first frame and find corners in it
ret, old_frame = cap.read()width = old_frame.shape[1]
height = old_frame.shape[0]# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)frame_count = 0
start_time = time.time()old_gray = first_graywhile True:ret, frame = cap.read()if not ret:breakframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)if p0 is not None:# Calculate optical flowp1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)  good_new = p1[st == 1]  # st==1 means found pointgood_old = p0[st == 1]if len(good_new) > 0:# Calculate movementa, b = good_new[0].ravel()c, d = good_old[0].ravel()# Draw the tracksmask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), (0, 255, 0), 2)frame = cv2.circle(frame, (int(a), int(b)), 5, (0, 255, 0), -1)img = cv2.add(frame, mask)# Calculate and display FPSelapsed_time = time.time() - start_timefps = frame_count / elapsed_time if elapsed_time > 0 else 0cv2.putText(img, f"FPS: {fps:.2f}", (width - 200, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)cv2.imshow('frame', img)# Update previous frame and pointsold_gray = frame_gray.copy()p0 = good_new.reshape(-1, 1, 2)else:p0 = None# Check if the tracked point is out of frameif not (25 <= a < width):p0 = None  # Reset p0 to None to detect new feature in the next iterationselected_point_distance = 0  # Reset selected point distance when new point is detected# Redetect features if necessaryif p0 is None:p0 = cv2.goodFeaturesToTrack(frame_gray, mask=None, **feature_params)mask = np.zeros_like(frame)selected_point_distance=0frame_count += 1k = cv2.waitKey(25)if k == 27:breakcv2.destroyAllWindows()
cap.release()

结果

这篇关于【OpenCV】 中使用 Lucas-Kanade 光流进行对象跟踪和路径映射的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098405

相关文章

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C