秃姐学AI系列之:使用块的网络——VGG

2024-08-23 00:52

本文主要是介绍秃姐学AI系列之:使用块的网络——VGG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

VGG

VGG块

VGG架构

总结

模型演变进度

代码实现

QA


VGG

上文讲的 AlexNet 虽然证明了深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。 

与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络架构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。

  • AlexNet 比 LeNet 更深更大得到更好的精度,有人就会想:能不能更大?更深?
  • 就会出现以下三种选项:
    • 更多的全连接层(代价太贵了)
    • 更多的卷积层
    • 将卷积层组合成块

VGG块

其实就是 AlexNet 思路的一个扩展

  • 3 x 3卷积,padding = 1:n层,m通道(两个超参数,且输出通道都为m)
  • 2 x 2最大池化层,stride = 2

核心思想就是用大量的VGG块来堆积成网络 

为什么VGG使用3 x 3而不是5 x 5?

  • 试过,因为5 x 5计算量变大了,所以需要网络浅一些
  • 在同样计算开销的情况下,发现 深但窄 的网络效果更好,即堆更多的3 x 3Conv层

VGG架构

  • 多个VGG块后接全连接层

  • 不同次数的重复块得到不同的架构:VGG-16(3个全连接+13个卷积),VGG-19..... 

 相当于从 AlexNet 较 LeNet 后面新增的结构抽出来构造了块,顶替掉了前面四层不规则的结构

总结

  • VGG使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。

  • 块的使用导致网络定义的非常简洁。使用块可以得到不同复杂度的变种网络(之后很多网络都有 高配版 和 低配版)。

  • 在VGG论文中,Simonyan 和 Ziserman 尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

模型演变进度

  • LeNet(1995):2卷积 + 池化层 + 2全连接

  • AlexNet:更大更深LeNet + ReLU + Dropout + 数据增强

  • VGG:更大更深AlexNet(重复的VGG块) 

代码实现

VGG块

import torch
from torch import nn
from d2l import torch as d2l# 卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels
def vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):  # 下划线是忽略值,即不需要的值layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)   # 把这些层丢进Sequential里面,*layers是解包,可以理解成把列表layers里面的元素拿出来放在那。其中:*=》list;**=》dict

 VGG网络:原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

为啥是五层:因为224每次卷积数据量减少一半,最后第五层会得到7,是个奇数哈哈哈

PS:每一层卷积几乎都是:高宽减半,通道数翻倍这个要记住,是个很经典的设计

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

老样子,观察每个层输出的形状

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)

QA

训练loss一直降,测试loss从开始起就一点不降,呈水平状是什么原因

①代码写错了

②已经过拟合了 

这篇关于秃姐学AI系列之:使用块的网络——VGG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097889

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1