概率统计Python计算:离散型随机变量分布(bernoulli geom)

本文主要是介绍概率统计Python计算:离散型随机变量分布(bernoulli geom),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
Python的scipy.stats包中提供了各种随机变量的分布。每一种分布,其累积分布函数(分布函数)记为cdf。离散型变量分布的概率质量函数(分布律),记为pmf。除此之外,每个分布都有一个服从该分部变量发生器函数rvs,用来产生服从该分布的随机数。

1. bernoulli分布(0-1分布)

Python的scipy.stats包中,bernoulli类就是用来表示伯努利分布的。常用的三个函数说明见下表。

函数名参数功能
rvs(p, size)p:分布参数,size:产生的随机数个数,缺省值为1产生size个随机数
pmf(k, p)k:随机变量取值,p:与上同概率质量函数(分布律) P ( X = k ) P(X=k) P(X=k)
cdf(k, p)k:分布函数自变量,p:与上同累积概率函数(分布函数) F ( k ) F(k) F(k)
例1 下列代码利用bernoulli类对象的rvs函数模拟重复抛掷均匀分币试验。
from scipy.stats import bernoulli   #导入bernoulli
import numpy as np                  #导入numpy
x=bernoulli.rvs(p=1/2,size=500)     #产生500个服从p=1/2的0-1分布的随机数
hist, _=np.histogram(x, bins=2)     #统计取0、1的频数
hist/500                            #输出频率

其中的第3行调用bernoulli类对象的随机数发生函数rvs产生500个服从参数 p = 1 / 2 p=1/2 p=1/2的0-1分布(抛掷均匀分币0,1分别表示正面朝下和正面朝上)的随机数。第4行调用numpy的histogram函数统计500个数据中取0、1的频数。第5行输出频率。运行程序,输出

array([0.498, 0.502])

可见取0和1的频率分别为0.499和0.502,很好地模拟了抛掷均匀分币这一伯努利试验。

2. geom分布(几何分布)

scipy.stats包提供的geom类表示几何分布。常用的三个函数rvs、pmf和cdf的名称、参数和意义是完全一致的。这是因为0-1分布和几何分布均仅有一个表示一次试验成功概率的参数 p p p。由此可见,引入随机变量处理不同随机试验下的随机事件概率问题的形式是统一的。
例2 设灯泡在任意一天损坏的概率 p = 0.001 p=0.001 p=0.001,计算该灯泡的寿命至少为30天的概率。
:设灯泡的使用寿命(单位:天)为 X X X,则 X X X服从参数为 p = 0.001 p=0.001 p=0.001的几何分布。令 q = 1 − p = 0.999 q=1-p=0.999 q=1p=0.999,灯泡寿命至少为30天的概率
P ( X ≥ 30 ) = 1 − P ( X ≤ 29 ) = 1 − F ( 29 ) = 1 − ∑ k = 1 29 q 29 − k p = 1 − p 1 − q 29 1 − q = q 29 = 0.99 9 29 = 0.9714. P(X\geq30)=1-P(X\leq29)=1-F(29)\\ =1-\sum\limits_{k=1}^{29}q^{29-k}p=1-p\frac{1-q^{29}}{1-q}\\ =q^{29}=0.999^{29}=0.9714. P(X30)=1P(X29)=1F(29)=1k=129q29kp=1p1q1q29=q29=0.99929=0.9714.
下列代码验算本例中灯泡寿命至少为30天的概率。

from scipy.stats import geom        #导入geom
prob=1-geom.cdf(k=29,p=0.001)       #计算1-F(29)
print('P(X>=30)=1-F(29)=%.4f'%prob) #输出P(X>=30)

程序的第2行调用geom(第1行导入)的cdf函数,计算 1 − F ( 29 ) = 1 − ∑ k = 1 29 ( 1 − p ) k − 1 p 1-F(29)=1-\sum\limits_{k=1}^{29}(1-p)^{k-1}p 1F(29)=1k=129(1p)k1p。运行程序,输出

P(X>=30)=1-F(29)=0.9714

scipy.stats为每一种分布提供残存函数sf,该函数计算 P ( X > x ) = 1 − P ( X ≤ x ) = 1 − cdf ( x ) P(X>x)=1-P(X\leq x)=1-\text{cdf}(x) P(X>x)=1P(Xx)=1cdf(x)。例如,在上列程序中,将第2行代码换成
prob=geom.sf(k=29, p=0.01) \text{prob=geom.sf(k=29, p=0.01)} prob=geom.sf(k=29, p=0.01)
来计算服从参数为 p = 0.01 p=0.01 p=0.01的几何分布的随机变量 X X X的概率 P ( X ≥ 30 ) = P ( X > 29 ) P(X\geq30)=P(X>29) P(X30)=P(X>29)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型随机变量分布(bernoulli geom)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097641

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚