概率统计Python计算:离散型随机变量分布(bernoulli geom)

本文主要是介绍概率统计Python计算:离散型随机变量分布(bernoulli geom),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
Python的scipy.stats包中提供了各种随机变量的分布。每一种分布,其累积分布函数(分布函数)记为cdf。离散型变量分布的概率质量函数(分布律),记为pmf。除此之外,每个分布都有一个服从该分部变量发生器函数rvs,用来产生服从该分布的随机数。

1. bernoulli分布(0-1分布)

Python的scipy.stats包中,bernoulli类就是用来表示伯努利分布的。常用的三个函数说明见下表。

函数名参数功能
rvs(p, size)p:分布参数,size:产生的随机数个数,缺省值为1产生size个随机数
pmf(k, p)k:随机变量取值,p:与上同概率质量函数(分布律) P ( X = k ) P(X=k) P(X=k)
cdf(k, p)k:分布函数自变量,p:与上同累积概率函数(分布函数) F ( k ) F(k) F(k)
例1 下列代码利用bernoulli类对象的rvs函数模拟重复抛掷均匀分币试验。
from scipy.stats import bernoulli   #导入bernoulli
import numpy as np                  #导入numpy
x=bernoulli.rvs(p=1/2,size=500)     #产生500个服从p=1/2的0-1分布的随机数
hist, _=np.histogram(x, bins=2)     #统计取0、1的频数
hist/500                            #输出频率

其中的第3行调用bernoulli类对象的随机数发生函数rvs产生500个服从参数 p = 1 / 2 p=1/2 p=1/2的0-1分布(抛掷均匀分币0,1分别表示正面朝下和正面朝上)的随机数。第4行调用numpy的histogram函数统计500个数据中取0、1的频数。第5行输出频率。运行程序,输出

array([0.498, 0.502])

可见取0和1的频率分别为0.499和0.502,很好地模拟了抛掷均匀分币这一伯努利试验。

2. geom分布(几何分布)

scipy.stats包提供的geom类表示几何分布。常用的三个函数rvs、pmf和cdf的名称、参数和意义是完全一致的。这是因为0-1分布和几何分布均仅有一个表示一次试验成功概率的参数 p p p。由此可见,引入随机变量处理不同随机试验下的随机事件概率问题的形式是统一的。
例2 设灯泡在任意一天损坏的概率 p = 0.001 p=0.001 p=0.001,计算该灯泡的寿命至少为30天的概率。
:设灯泡的使用寿命(单位:天)为 X X X,则 X X X服从参数为 p = 0.001 p=0.001 p=0.001的几何分布。令 q = 1 − p = 0.999 q=1-p=0.999 q=1p=0.999,灯泡寿命至少为30天的概率
P ( X ≥ 30 ) = 1 − P ( X ≤ 29 ) = 1 − F ( 29 ) = 1 − ∑ k = 1 29 q 29 − k p = 1 − p 1 − q 29 1 − q = q 29 = 0.99 9 29 = 0.9714. P(X\geq30)=1-P(X\leq29)=1-F(29)\\ =1-\sum\limits_{k=1}^{29}q^{29-k}p=1-p\frac{1-q^{29}}{1-q}\\ =q^{29}=0.999^{29}=0.9714. P(X30)=1P(X29)=1F(29)=1k=129q29kp=1p1q1q29=q29=0.99929=0.9714.
下列代码验算本例中灯泡寿命至少为30天的概率。

from scipy.stats import geom        #导入geom
prob=1-geom.cdf(k=29,p=0.001)       #计算1-F(29)
print('P(X>=30)=1-F(29)=%.4f'%prob) #输出P(X>=30)

程序的第2行调用geom(第1行导入)的cdf函数,计算 1 − F ( 29 ) = 1 − ∑ k = 1 29 ( 1 − p ) k − 1 p 1-F(29)=1-\sum\limits_{k=1}^{29}(1-p)^{k-1}p 1F(29)=1k=129(1p)k1p。运行程序,输出

P(X>=30)=1-F(29)=0.9714

scipy.stats为每一种分布提供残存函数sf,该函数计算 P ( X > x ) = 1 − P ( X ≤ x ) = 1 − cdf ( x ) P(X>x)=1-P(X\leq x)=1-\text{cdf}(x) P(X>x)=1P(Xx)=1cdf(x)。例如,在上列程序中,将第2行代码换成
prob=geom.sf(k=29, p=0.01) \text{prob=geom.sf(k=29, p=0.01)} prob=geom.sf(k=29, p=0.01)
来计算服从参数为 p = 0.01 p=0.01 p=0.01的几何分布的随机变量 X X X的概率 P ( X ≥ 30 ) = P ( X > 29 ) P(X\geq30)=P(X>29) P(X30)=P(X>29)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型随机变量分布(bernoulli geom)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097641

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre