概率统计Python计算:离散型自定义分布数学期望的计算(一)

2024-08-22 22:48

本文主要是介绍概率统计Python计算:离散型自定义分布数学期望的计算(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对非经典分布的随机变量,当然可以按博文《自定义离散型分布》中介绍的方法,自定义rv_discrete(离散型)或rv_continuos(连续型)的子类(详见博文《自定义连续型分布》),然后调用其expect函数计算数学期望。
例1 有3只球,4个盒子,盒子的编号为1、2、3。将球逐个独立地,随机地放入4个盒子中去。以 X X X表示其中至少有一只球的盒子的最小号码(例如 X = 3 X=3 X=3表示第1号,第2号盒子是空的,第3号盒子至少有一只球),计算 E ( X ) E(X) E(X)
解: 显然, X X X的取值为 { 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} {1,2,3,4}。设 A i A_i Ai表示 i i i号盒是空的( i = 1 , 2 , 3 , 4 i=1, 2, 3, 4 i=1,2,3,4)。每个球放入1号盒的概率为 1 / 4 1/4 1/4,没有放入1号盒的概率为 3 / 4 3/4 3/4
P ( X = 1 ) = P ( A ‾ 1 ) = 1 − P ( A 1 ) = 1 − ( 3 4 ) 3 = 37 64 P(X=1)=P(\overline{A}_1)=1-P(A_1)=1-\left(\frac{3}{4}\right)^3=\frac{37}{64} P(X=1)=P(A1)=1P(A1)=1(43)3=6437
P ( X = 2 ) = P ( A 1 A ‾ 2 ) = P ( A 1 ) P ( A ‾ 2 ∣ A 1 ) = P ( A 1 ) ( 1 − P ( A 2 ∣ A 1 ) ) = ( 3 4 ) 3 [ 1 − ( 2 3 ) 3 ] = 27 64 ⋅ 19 27 = 19 64 P(X=2)=P(A_1\overline{A}_2)=P(A_1)P(\overline{A}_2|A_1)\\ =P(A_1)(1-P(A_2|A_1))=\left(\frac{3}{4}\right)^3\left[1-\left(\frac{2}{3}\right)^3\right]\\ =\frac{27}{64}\cdot\frac{19}{27}=\frac{19}{64} P(X=2)=P(A1A2)=P(A1)P(A2A1)=P(A1)(1P(A2A1))=(43)3[1(32)3]=64272719=6419
P ( X = 3 ) = P ( A 1 A 2 A ‾ 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A ‾ 3 ∣ A 1 A 2 ) = ( 3 4 ) 3 ( 2 3 ) 3 [ 1 − ( 1 2 ) 3 ] = 7 64 P(X=3)=P(A_1A_2\overline{A}_3)=P(A_1)P(A_2|A_1)P(\overline{A}_3|A_1A_2)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left[1-\left(\frac{1}{2}\right)^3\right]=\frac{7}{64} P(X=3)=P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)=(43)3(32)3[1(21)3]=647
P ( X = 4 ) = P ( A 1 A 2 A 3 A ‾ 4 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P ( A ‾ 4 ∣ A 1 A 2 A 3 ) = ( 3 4 ) 3 ( 2 3 ) 3 ( 1 2 ) 3 = 1 64 P(X=4)=P(A_1A_2A_3\overline{A}_4)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)P(\overline{A}_4|A_1A_2A_3)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left(\frac{1}{2}\right)^3=\frac{1}{64} P(X=4)=P(A1A2A3A4)=P(A1)P(A2A1)P(A3A1A2)P(A4A1A2A3)=(43)3(32)3(21)3=641
X X X~ ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641) E ( X ) = 1 ⋅ 37 64 + 2 ⋅ 19 64 + 3 ⋅ 7 64 + 4 ⋅ 1 64 = 25 16 E(X)=1\cdot\frac{37}{64}+2\cdot\frac{19}{64}+3\cdot\frac{7}{64}+4\cdot\frac{1}{64}=\frac{25}{16} E(X)=16437+26419+3647+4641=1625
下列代码定义分布律为 ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641)的离散型分布,调用其expect函数计算 E ( X ) E(X) E(X)

import numpy as np                      #导入numpy
from scipy.stats import rv_discrete     #导入rv_discrete
X=np.array([1,2,3,4])                   #随机变量
P=np.array([37/64, 19/64,7/64, 1/64])   #X的分布概率
mydist=rv_discrete(values=(X, P))       #自定义离散分布
Ex=mydist.expect()                      #计算数学期望
print('E(X)=%.4f'%Ex)

第3~4行设置分布律数据X和P。第5行用分布律数据X和P定义离散型分布mydist。第6行调用该分布的expect函数,计算随机变量 X X X的数学期望 E ( X ) E(X) E(X)。运行程序,输出

E(X)=1.5625

恰为 E ( X ) = 25 16 E(X)=\frac{25}{16} E(X)=1625精确到万分位的值。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型自定义分布数学期望的计算(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1097622

相关文章

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷