概率统计Python计算:离散型自定义分布数学期望的计算(一)

2024-08-22 22:48

本文主要是介绍概率统计Python计算:离散型自定义分布数学期望的计算(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对非经典分布的随机变量,当然可以按博文《自定义离散型分布》中介绍的方法,自定义rv_discrete(离散型)或rv_continuos(连续型)的子类(详见博文《自定义连续型分布》),然后调用其expect函数计算数学期望。
例1 有3只球,4个盒子,盒子的编号为1、2、3。将球逐个独立地,随机地放入4个盒子中去。以 X X X表示其中至少有一只球的盒子的最小号码(例如 X = 3 X=3 X=3表示第1号,第2号盒子是空的,第3号盒子至少有一只球),计算 E ( X ) E(X) E(X)
解: 显然, X X X的取值为 { 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} {1,2,3,4}。设 A i A_i Ai表示 i i i号盒是空的( i = 1 , 2 , 3 , 4 i=1, 2, 3, 4 i=1,2,3,4)。每个球放入1号盒的概率为 1 / 4 1/4 1/4,没有放入1号盒的概率为 3 / 4 3/4 3/4
P ( X = 1 ) = P ( A ‾ 1 ) = 1 − P ( A 1 ) = 1 − ( 3 4 ) 3 = 37 64 P(X=1)=P(\overline{A}_1)=1-P(A_1)=1-\left(\frac{3}{4}\right)^3=\frac{37}{64} P(X=1)=P(A1)=1P(A1)=1(43)3=6437
P ( X = 2 ) = P ( A 1 A ‾ 2 ) = P ( A 1 ) P ( A ‾ 2 ∣ A 1 ) = P ( A 1 ) ( 1 − P ( A 2 ∣ A 1 ) ) = ( 3 4 ) 3 [ 1 − ( 2 3 ) 3 ] = 27 64 ⋅ 19 27 = 19 64 P(X=2)=P(A_1\overline{A}_2)=P(A_1)P(\overline{A}_2|A_1)\\ =P(A_1)(1-P(A_2|A_1))=\left(\frac{3}{4}\right)^3\left[1-\left(\frac{2}{3}\right)^3\right]\\ =\frac{27}{64}\cdot\frac{19}{27}=\frac{19}{64} P(X=2)=P(A1A2)=P(A1)P(A2A1)=P(A1)(1P(A2A1))=(43)3[1(32)3]=64272719=6419
P ( X = 3 ) = P ( A 1 A 2 A ‾ 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A ‾ 3 ∣ A 1 A 2 ) = ( 3 4 ) 3 ( 2 3 ) 3 [ 1 − ( 1 2 ) 3 ] = 7 64 P(X=3)=P(A_1A_2\overline{A}_3)=P(A_1)P(A_2|A_1)P(\overline{A}_3|A_1A_2)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left[1-\left(\frac{1}{2}\right)^3\right]=\frac{7}{64} P(X=3)=P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)=(43)3(32)3[1(21)3]=647
P ( X = 4 ) = P ( A 1 A 2 A 3 A ‾ 4 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P ( A ‾ 4 ∣ A 1 A 2 A 3 ) = ( 3 4 ) 3 ( 2 3 ) 3 ( 1 2 ) 3 = 1 64 P(X=4)=P(A_1A_2A_3\overline{A}_4)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)P(\overline{A}_4|A_1A_2A_3)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left(\frac{1}{2}\right)^3=\frac{1}{64} P(X=4)=P(A1A2A3A4)=P(A1)P(A2A1)P(A3A1A2)P(A4A1A2A3)=(43)3(32)3(21)3=641
X X X~ ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641) E ( X ) = 1 ⋅ 37 64 + 2 ⋅ 19 64 + 3 ⋅ 7 64 + 4 ⋅ 1 64 = 25 16 E(X)=1\cdot\frac{37}{64}+2\cdot\frac{19}{64}+3\cdot\frac{7}{64}+4\cdot\frac{1}{64}=\frac{25}{16} E(X)=16437+26419+3647+4641=1625
下列代码定义分布律为 ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641)的离散型分布,调用其expect函数计算 E ( X ) E(X) E(X)

import numpy as np                      #导入numpy
from scipy.stats import rv_discrete     #导入rv_discrete
X=np.array([1,2,3,4])                   #随机变量
P=np.array([37/64, 19/64,7/64, 1/64])   #X的分布概率
mydist=rv_discrete(values=(X, P))       #自定义离散分布
Ex=mydist.expect()                      #计算数学期望
print('E(X)=%.4f'%Ex)

第3~4行设置分布律数据X和P。第5行用分布律数据X和P定义离散型分布mydist。第6行调用该分布的expect函数,计算随机变量 X X X的数学期望 E ( X ) E(X) E(X)。运行程序,输出

E(X)=1.5625

恰为 E ( X ) = 25 16 E(X)=\frac{25}{16} E(X)=1625精确到万分位的值。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型自定义分布数学期望的计算(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097622

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库