概率统计Python计算:假设检验应用——分布拟合检验

2024-08-22 22:48

本文主要是介绍概率统计Python计算:假设检验应用——分布拟合检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对来自总体 X X X的样本 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,及给定的显著水平 α \alpha α检验假设 H 0 : X 的分布函数为 F ( x ) ( H 1 : X 的分布函数不是 F ( x ) ) . H_0:X\text{的分布函数为}F(x)(H_1:X\text{的分布函数不是}F(x)). H0:X的分布函数为F(x)(H1:X的分布函数不是F(x)).其中, F ( x ) F(x) F(x)是已知分布类型的分布函数(或分布律),含有 r r r个未知参数。为此,需要将 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)划分成 k ≤ n k\leq n kn个区间 A 1 , A 2 , ⋯ , A k A_1,A_2,\cdots,A_k A1,A2,,Ak,统计样本中落入每个区间 A i A_i Ai中的频数 f i f_i fi并按假设中的分布函数 F ( x ) F(x) F(x)(用未知参数的最大似然统计量值替代对应参数)计算概率 p i = P ( X ∈ A i ) p_i=P(X\in A_i) pi=P(XAi)。利用这些数据,调用scipy.stats包中的函数
chisquare(f_obs, f_exp, ddof=0) \text{chisquare(f\_obs, f\_exp, ddof=0)} chisquare(f_obs, f_exp, ddof=0)
即可算得检验假设 H 0 H_0 H0的p值。该函数的参数f_obs表示上述样本频数序列 { f 1 , f 2 , ⋯ , f k } \{f_1,f_2,\cdots,f_k\} {f1,f2,,fk},f_exp表示假设总体概率序列 { n p 1 , n p 2 , ⋯ , n p k } \{np_1,np_2,\cdots,np_k\} {np1,np2,,npk},ddof表示假设总体所含的未知参数个数 r r r,缺省值为0。该函数的返回值包括两个数据:表示检验统计量值 χ 2 = ∑ i = 1 k ( f i − n p i ) 2 n p i \chi^2=\sum\limits_{i=1}^k\frac{(f_i-np_i)^2}{np_i} χ2=i=1knpi(finpi)2的chisq,和表示检验p值 S ( χ 2 ) = 1 − F ( χ 2 ) S(\chi^2)=1-F(\chi^2) S(χ2)=1F(χ2)的p,其中 F ( x ) F(x) F(x) S ( x ) S(x) S(x)分别为 χ 2 ( k − 1 − r ) \chi^2(k-1-r) χ2(k1r)分布的分布函数和残存函数。
例1在一实验中,每隔一定时间观察一次由某种铀所放射的到达计数器上的 α \alpha α粒子数 X X X,共观察了100次,得结果如下表:

i i i01234567891011 ≥ \geq 12
f i f_i fi15161726119921210
A i A_i Ai A 0 A_0 A0 A 1 A_1 A1 A 2 A_2 A2 A 3 A_3 A3 A 4 A_4 A4 A 5 A_5 A5 A 6 A_6 A6 A 7 A_7 A7 A 8 A_8 A8 A 9 A_9 A9 A 10 A_{10} A10 A 11 A_{11} A11 A 12 A_{12} A12

其中, f i f_i fi是观察到有 i i i α \alpha α粒子的次数,从理论上考虑知 X X X应服从泊松分布 π ( λ ) \pi(\lambda) π(λ),问此判断是否符合实际(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 下列代码完成本例中假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)的检验。

from scipy.stats import poisson, chisquare  #导入poisson, chisquare
import numpy as np                          #导入numpy
n=100                                       #样本容量
alpha=0.05                                  #显著水平
f=np.array([1,5,16,17,26,11,9,9,2,1,2,1,0]) #样本数据频数
k=f.size                                    #区间个数
r=1                                         #总体未知参数个数
x_bar=(np.arange(k)*f).sum()/n              #总体均值的最大似然估计值
p=[poisson.pmf(i,x_bar) for i in range(k-1)]#各区间内概率
p.append(1-sum(p))
p=np.array(p)
_, pv=chisquare(f, p*n, r)                  #检验p值
print('H0 is %s'%(pv>=alpha))

程序的第3~5行按题面设置各项数据。第6行计算区间个数k,第7行设置未知参数个数r,第8行计算假设中总体所含未知参数 λ \lambda λ的最大似然估计值x_bar。第9行计算概率 p i = λ i i ! e − λ , i = 0 , 1 , ⋯ , k − 2 p_i=\frac{\lambda^i}{i!}e^{-\lambda},i=0,1,\cdots,k-2 pi=i!λieλ,i=0,1,,k2,第10行计算 p k − 1 = 1 − ∑ i = 0 k − 2 p i p_{k-1}=1-\sum\limits_{i=0}^{k-2}p_i pk1=1i=0k2pi,第11行将算得的 p 0 , p 1 , ⋯ , p k − 1 p_0,p_1,\cdots,p_{k-1} p0,p1,,pk1构造成数组p。第12行调用函数chisquare,传递参数f(各区间内样本数据频数),n*p(序列 n p 0 , n p 1 , ⋯ , n p k − 1 np_0,np_1,\cdots,np_{k-1} np0,np1,,npk1)和r(未知参数个数),计算假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)的检验p值(由于此处我们并不需要检验统计量值,故用下划线将chisq屏蔽)。运行程序,输出

H0 is True.

表示接受假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:假设检验应用——分布拟合检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097621

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: