概率统计Python计算:一元线性回归未知参数的区间估计

本文主要是介绍概率统计Python计算:一元线性回归未知参数的区间估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在博文《一元线性回归未知参数的点估计》中利用scipy.stats的linregress函数,计算了总体分布 N ( a x + b , σ 2 ) N(ax+b, \sigma^2) N(ax+b,σ2)的未知参数 a a a b b b σ 2 \sigma^2 σ2的无偏估计 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2。由于 ( a ∧ − a ) n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (\stackrel{\wedge}{a}-a)\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (aa)(n2)i=1n(xix)2nσ2 ~ t ( n − 2 ) t(n-2) t(n2) ( b ∧ − b ) σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (\stackrel{\wedge}{b}-b)\sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (bb)(n2)i=1n(xix)2σ2i=1nxi2 ~ t ( n − 2 ) t(n-2) t(n2) n σ 2 ∧ σ 2 \frac{n\stackrel{\wedge}{\sigma^2}}{\sigma^2} σ2nσ2~ χ 2 ( n − 2 ) \chi^2(n-2) χ2(n2),故对 1 − α 1-\alpha 1α的置信水平, a a a b b b σ 2 \sigma^2 σ2的置信区间分别为
( a ∧ ± t α / 2 ( n − 2 ) n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 ) , ( b ∧ ± t α / 2 ( n − 2 ) σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 ) , ( n σ 2 ∧ χ α / 2 2 ( n − 2 ) , n σ 2 ∧ χ 1 − α / 2 2 ( n − 2 ) ) . \left(\stackrel{\wedge}{a}\pm t_{\alpha/2}(n-2)\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}\right),\\ \left(\stackrel{\wedge}{b}\pm t_{\alpha/2}(n-2)\sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}\right),\\ \left(\frac{n\stackrel{\wedge}{\sigma^2}}{\chi_{\alpha/2}^2(n-2)},\frac{n\stackrel{\wedge}{\sigma^2}}{\chi_{1-\alpha/2}^2(n-2)}\right). a±tα/2(n2)(n2)i=1n(xix)2nσ2 , b±tα/2(n2)(n2)i=1n(xix)2σ2i=1nxi2 , χα/22(n2)nσ2,χ1α/22(n2)nσ2 .
我们已经知道linregress函数的返回值属性slope和intercept分别表示 a a a b b b的无偏估计, a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b,利用属性stderr(表示 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2nσ2 )可算得 σ 2 \sigma^2 σ2的无偏估计 σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2,而这刚好是 a a a的置信区间增量因子。linregress函数的返回值属性intercept_stderr表示 b ∧ \stackrel{\wedge}{b} b的标准差 σ 2 ∑ i = 1 n x i 2 n ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\sigma^2\sum\limits_{i=1}^nx_i^2}{n\sum\limits_{i=1}^n(x_i-\overline{x})^2}} ni=1n(xix)2σ2i=1nxi2 的估计量 σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2σ2i=1nxi2 ,恰为 b b b的置信区间增量因子。而用 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2 (n2)i=1n(xix)2乘以stderr的平方,即得 σ 2 \sigma^2 σ2的置信区间上下限的分子 n σ 2 ∧ n\stackrel{\wedge}{\sigma^2} nσ2
例1为研究某一化学反应过程中,温度 x x x(摄氏度)对产品得率 Y Y Y(%)的影响,测得数据如下
温度 x : 100 , 110 , 120 , 130 , 140 , 150 , 160 , 170 , 180 , 200 得率 Y : 45 , 51 , 54 , 61 , 66 , 70 , 74 , 78 , 85 , 89 \text{温度}x:100,110,120,130,140,150,160,170,180,200\\ \text{得率}Y:45,51,54,61,66,70,74,78,85,89 温度x:100,110,120,130,140,150,160,170,180,200得率Y:45,51,54,61,66,70,74,78,85,89
Y Y Y~ N ( a x + b , σ 2 ) N(ax+b, \sigma^2) N(ax+b,σ2),计算 a a a b b b σ 2 \sigma^2 σ2置信水平为 1 − α 1-\alpha 1α的置信区间。
解: 下列代码完成本例计算。

alpha=0.05
x=np.array([100,110,120,130,140,150,160,170,180,190])
y=np.array([45,51,54,61,66,70,74,78,85,89])
n=x.size
x_bar=x.mean()
lxx=((x-x_bar)**2).sum()
res=linregress(x, y)
a=res.slope
b=res.intercept
s2=(res.stderr**2)*lxx*(n-2)/n
print('a=%.3f,b=%.3f,s2=%.3f'%(a,b,s2))
d=res.stderr
(la, ra)=muBounds(a, d, 1-alpha, n-2)
d=res.intercept_stderr
(lb, rb)=muBounds(b, d, 1-alpha, n-2)
d=n*s2
(ls, rs)=sigma2Bounds(d, n-2, 1-alpha)
print('(%.3f,%.3f)'%(la, ra))
print('(%.3f,%.3f)'%(lb, rb))
print('(%.3f,%.3f)'%(ls, rs))

第6行计算 ∑ i = 1 n ( x i − x ‾ ) 2 \sum\limits_{i=1}^n(x_i-\overline{x})^2 i=1n(xix)2为lxx。第7行调用linregress,返回值为res。第8~10行分别计算 a a a b b b σ 2 \sigma^2 σ2的点估计值(参见博文《一元线性回归未知参数的点估计》)。第12行计算 a a a的置信区间增量因子 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2nσ2 (即res的stderr字段)为d,第13行调用muBounds函数计算 a a a的双侧置信区间。相仿地,第14行计算 b b b的置信区间增量因子 σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2σ2i=1nxi2 (即res的intercept_stderr字段)为d,第15行计算 b b b的置信区间。第16行调用sigma2Bounds函数计算 σ 2 \sigma^2 σ2的置信区间上下限分子 n σ 2 ∧ n\stackrel{\wedge}{\sigma^2} nσ2为d,第17行计算 σ 2 \sigma^2 σ2的置信区间。运行程序,输出

a=0.483,b=-2.739,s2=0.722
(0.459,0.507)
(-6.306,0.827)
(0.412,3.314)

表示 a a a b b b σ 2 \sigma^2 σ2的点估计值分别为0.483,-2.739和0.722,在0.95的置信水平下, a a a b b b σ 2 \sigma^2 σ2的置信区间分别为(0.459,0.507),(-6.306,0.827)和(0.412,3.314)。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:一元线性回归未知参数的区间估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097617

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1