概率统计Python计算:一元线性回归未知参数的区间估计

本文主要是介绍概率统计Python计算:一元线性回归未知参数的区间估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在博文《一元线性回归未知参数的点估计》中利用scipy.stats的linregress函数,计算了总体分布 N ( a x + b , σ 2 ) N(ax+b, \sigma^2) N(ax+b,σ2)的未知参数 a a a b b b σ 2 \sigma^2 σ2的无偏估计 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2。由于 ( a ∧ − a ) n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (\stackrel{\wedge}{a}-a)\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (aa)(n2)i=1n(xix)2nσ2 ~ t ( n − 2 ) t(n-2) t(n2) ( b ∧ − b ) σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (\stackrel{\wedge}{b}-b)\sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (bb)(n2)i=1n(xix)2σ2i=1nxi2 ~ t ( n − 2 ) t(n-2) t(n2) n σ 2 ∧ σ 2 \frac{n\stackrel{\wedge}{\sigma^2}}{\sigma^2} σ2nσ2~ χ 2 ( n − 2 ) \chi^2(n-2) χ2(n2),故对 1 − α 1-\alpha 1α的置信水平, a a a b b b σ 2 \sigma^2 σ2的置信区间分别为
( a ∧ ± t α / 2 ( n − 2 ) n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 ) , ( b ∧ ± t α / 2 ( n − 2 ) σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 ) , ( n σ 2 ∧ χ α / 2 2 ( n − 2 ) , n σ 2 ∧ χ 1 − α / 2 2 ( n − 2 ) ) . \left(\stackrel{\wedge}{a}\pm t_{\alpha/2}(n-2)\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}\right),\\ \left(\stackrel{\wedge}{b}\pm t_{\alpha/2}(n-2)\sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}\right),\\ \left(\frac{n\stackrel{\wedge}{\sigma^2}}{\chi_{\alpha/2}^2(n-2)},\frac{n\stackrel{\wedge}{\sigma^2}}{\chi_{1-\alpha/2}^2(n-2)}\right). a±tα/2(n2)(n2)i=1n(xix)2nσ2 , b±tα/2(n2)(n2)i=1n(xix)2σ2i=1nxi2 , χα/22(n2)nσ2,χ1α/22(n2)nσ2 .
我们已经知道linregress函数的返回值属性slope和intercept分别表示 a a a b b b的无偏估计, a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b,利用属性stderr(表示 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2nσ2 )可算得 σ 2 \sigma^2 σ2的无偏估计 σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2,而这刚好是 a a a的置信区间增量因子。linregress函数的返回值属性intercept_stderr表示 b ∧ \stackrel{\wedge}{b} b的标准差 σ 2 ∑ i = 1 n x i 2 n ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\sigma^2\sum\limits_{i=1}^nx_i^2}{n\sum\limits_{i=1}^n(x_i-\overline{x})^2}} ni=1n(xix)2σ2i=1nxi2 的估计量 σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2σ2i=1nxi2 ,恰为 b b b的置信区间增量因子。而用 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 (n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2 (n2)i=1n(xix)2乘以stderr的平方,即得 σ 2 \sigma^2 σ2的置信区间上下限的分子 n σ 2 ∧ n\stackrel{\wedge}{\sigma^2} nσ2
例1为研究某一化学反应过程中,温度 x x x(摄氏度)对产品得率 Y Y Y(%)的影响,测得数据如下
温度 x : 100 , 110 , 120 , 130 , 140 , 150 , 160 , 170 , 180 , 200 得率 Y : 45 , 51 , 54 , 61 , 66 , 70 , 74 , 78 , 85 , 89 \text{温度}x:100,110,120,130,140,150,160,170,180,200\\ \text{得率}Y:45,51,54,61,66,70,74,78,85,89 温度x:100,110,120,130,140,150,160,170,180,200得率Y:45,51,54,61,66,70,74,78,85,89
Y Y Y~ N ( a x + b , σ 2 ) N(ax+b, \sigma^2) N(ax+b,σ2),计算 a a a b b b σ 2 \sigma^2 σ2置信水平为 1 − α 1-\alpha 1α的置信区间。
解: 下列代码完成本例计算。

alpha=0.05
x=np.array([100,110,120,130,140,150,160,170,180,190])
y=np.array([45,51,54,61,66,70,74,78,85,89])
n=x.size
x_bar=x.mean()
lxx=((x-x_bar)**2).sum()
res=linregress(x, y)
a=res.slope
b=res.intercept
s2=(res.stderr**2)*lxx*(n-2)/n
print('a=%.3f,b=%.3f,s2=%.3f'%(a,b,s2))
d=res.stderr
(la, ra)=muBounds(a, d, 1-alpha, n-2)
d=res.intercept_stderr
(lb, rb)=muBounds(b, d, 1-alpha, n-2)
d=n*s2
(ls, rs)=sigma2Bounds(d, n-2, 1-alpha)
print('(%.3f,%.3f)'%(la, ra))
print('(%.3f,%.3f)'%(lb, rb))
print('(%.3f,%.3f)'%(ls, rs))

第6行计算 ∑ i = 1 n ( x i − x ‾ ) 2 \sum\limits_{i=1}^n(x_i-\overline{x})^2 i=1n(xix)2为lxx。第7行调用linregress,返回值为res。第8~10行分别计算 a a a b b b σ 2 \sigma^2 σ2的点估计值(参见博文《一元线性回归未知参数的点估计》)。第12行计算 a a a的置信区间增量因子 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2nσ2 (即res的stderr字段)为d,第13行调用muBounds函数计算 a a a的双侧置信区间。相仿地,第14行计算 b b b的置信区间增量因子 σ 2 ∧ ∑ i = 1 n x i 2 ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\stackrel{\wedge}{\sigma^2}\sum\limits_{i=1}^nx_i^2}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}} (n2)i=1n(xix)2σ2i=1nxi2 (即res的intercept_stderr字段)为d,第15行计算 b b b的置信区间。第16行调用sigma2Bounds函数计算 σ 2 \sigma^2 σ2的置信区间上下限分子 n σ 2 ∧ n\stackrel{\wedge}{\sigma^2} nσ2为d,第17行计算 σ 2 \sigma^2 σ2的置信区间。运行程序,输出

a=0.483,b=-2.739,s2=0.722
(0.459,0.507)
(-6.306,0.827)
(0.412,3.314)

表示 a a a b b b σ 2 \sigma^2 σ2的点估计值分别为0.483,-2.739和0.722,在0.95的置信水平下, a a a b b b σ 2 \sigma^2 σ2的置信区间分别为(0.459,0.507),(-6.306,0.827)和(0.412,3.314)。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:一元线性回归未知参数的区间估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097617

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所