概率统计Python计算:双因素等重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素等重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素等重复试验的数据模型 X X X是一个结构为 r × s × t r\times s\times t r×s×t的3-维矩阵(张量),其中 X i j k X_{ijk} Xijk取自于总体指标 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) i = 1 , 2 , ⋯ , r , j = 1 , 2 , ⋯ , s , k = 1 , 2 , ⋯ , t i=1,2,\cdots,r,j=1,2,\cdots,s,k=1,2,\cdots,t i=1,2,,r,j=1,2,,s,k=1,2,,t。记 X ‾ = 1 r s t ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t X i j k X ‾ i j = 1 t ∑ k = 1 t X i j k , i = 1 , 2 , ⋯ ; r , j = 1 , 2 , ⋯ , s X ‾ i ⋅ = 1 s t ∑ j = 1 s ∑ k = 1 t X i j k = 1 s ∑ j = 1 s X ‾ i j , i = 1 , 2 , ⋯ , r X ‾ ⋅ j = 1 r t ∑ i = 1 r ∑ k = 1 t X i j k = 1 r ∑ i = 1 r X ‾ i j , j = 1 , 2 ⋯ , s S T = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ ) 2 \overline{X}=\frac{1}{rst}\sum_{i=1}^r\sum_{j=1}^s\sum_{k=1}^{t}X_{ijk}\\\overline{X}_{ij}=\frac{1}{t}\sum_{k=1}^tX_{ijk},i=1,2,\cdots;r,j=1,2,\cdots,s\\\overline{X}_{i\cdot}=\frac{1}{st}\sum_{j=1}^s\sum_{k=1}^tX_{ijk}=\frac{1}{s}\sum_{j=1}^s\overline{X}_{ij},i=1,2,\cdots,r\\ \overline{X}_{\cdot j}=\frac{1}{rt}\sum_{i=1}^r\sum_{k=1}^tX_{ijk}=\frac{1}{r}\sum_{i=1}^r\overline{X}_{ij},j=1,2\cdots,s\\ S_T=\sum_{i=1}^r\sum_{j=1}^s\sum_{k=1}^t(X_{ijk}-\overline{X})^2 X=rst1i=1rj=1sk=1tXijkXij=t1k=1tXijk,i=1,2,;r,j=1,2,,sXi=st1j=1sk=1tXijk=s1j=1sXij,i=1,2,,rXj=rt1i=1rk=1tXijk=r1i=1rXij,j=1,2,sST=i=1rj=1sk=1t(XijkX)2
其中, X ‾ \overline{X} X为样本总均值, X ‾ i ⋅ \overline{X}_{i\cdot} Xi为因素水平 A i A_i Ai对应的样本均值, X ‾ ⋅ j \overline{X}_{\cdot j} Xj为因素水平 B j B_j Bj对应的样本均值, X ‾ i j \overline{X}_{ij} Xij为组合因素样本均值, S T S_T ST样本总变差
S E = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ i j ) 2 S_E=\sum\limits_{i=1}^r\sum\limits_{j=1}^s\sum\limits_{k=1}^t(X_{ijk}-\overline{X}_{ij})^2 SE=i=1rj=1sk=1t(XijkXij)2,称为误差平方和 S A = s t ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=st\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=sti=1r(XiX)2,称为因素 A A A的效应平方和 S B = r t ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=rt\sum\limits_{j=1}^s(\overline{X}_{\cdot j}-\overline{X})^2 SB=rtj=1s(XjX)2,称为效应 B B B的平方和 S A B = t ∑ i = 1 r ∑ j = 1 s ( X ‾ i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_{AB}=t\sum\limits_{i=1}^r\sum\limits_{j=1}^s(\overline{X}_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SAB=ti=1rj=1s(XijXiXj+X)2,称为因素 A A A B B B的交互效应平方和
与单因素试验模型中样本总变差 S T S_T ST的分解类似,双因素等重复试验的样本总变差 S T S_T ST可分解为
S T = S E + S A + S B + S A B . S_T=S_E+S_A+S_B+S_{AB}. ST=SE+SA+SB+SAB.
下列代码定义双因素等重复试验的样本总变差 S T S_T ST的分解函数。

def dfeDecompose(X):(r,s,t)=X.shape									#模型数据结构X_bar=X.mean(axis=2)							#组合因素样本均值Xi_bar=X_bar.mean(axis=1).reshape(r,1)			#A因素水平样本均值Xj_bar=X_bar.mean(axis=0).reshape(1,s)			#B因素水平样本均值Xt_bar=X.mean()									#样本总均值ST=((X-Xt_bar)**2).sum()						#样本总变差SA=s*t*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*t*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SAB=t*((X_bar-Xi_bar-Xj_bar+Xt_bar)**2).sum()	#交互效应平方和SE=ST-SA-SB-SAB									#误差平方和return r, s, t, SA, SB, SAB, SE

第2行从X的结构中读取其宽度r,长度s和深度t。第3行计算因素水平 A i A_i Ai B j B_j Bj组合对应的样本均值 X ‾ i j \overline{X}_{ij} Xij 1 ≤ i ≤ r , 1 ≤ j ≤ s 1\leq i\leq r,1\leq j\leq s 1ir,1js)为X_bar。它是由参数X表示的张量按下标 k k k方向计算样本均值:X.mean(axis=2)所得,这是一个 r × s r\times s r×s的矩阵。第4行由X_bar按下标 j j j的方向计算因素水平 A i A_i Ai对应的样本均值 X ‾ i ⋅ \overline{X}_{i\cdot} Xi为Xi_bar,设置为一个 r × 1 r\times1 r×1的矩阵。相仿地,第5行由X_bar按下标 i i i的方向计算因素水平 B j B_j Bj对应的样本均值 X ‾ ⋅ j \overline{X}_{\cdot j} Xj为Xj_bar,设置为一个 1 × s 1\times s 1×s的矩阵。第6行计算总样本均值 X ‾ \overline{X} X为Xt_bar,这是一个实数。第7行计算总变差平方 S T = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ ) 2 S_T=\sum\limits_{i=1}^r\sum\limits_{j=1}^s\sum\limits_{k=1}^t(X_{ijk}-\overline{X})^2 ST=i=1rj=1sk=1t(XijkX)2为ST。第8行计算因素 A A A的效应平方和 S A = s t ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=st\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=sti=1r(XiX)2为SA。第9行计算因素 B B B的效应平方和 S B = r t ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=rt\sum\limits_{j=1}^s(\overline{X}_{\cdot j}-\overline{X})^2 SB=rtj=1s(XjX)2为SB。第10行计算因素的交互效应平方和 S A B = t ∑ i = 1 r ∑ j = 1 s ( X ‾ i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_{AB}=t\sum\limits_{i=1}^r\sum\limits_{j=1}^s(\overline{X}_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SAB=ti=1rj=1s(XijXiXj+X)2为SAB,正因为我们将Xi_bar和Xj_bar设置成了 r × 1 r\times1 r×1 1 × s 1\times s 1×s的矩阵,所以此处的表达式才几乎和数学表达式一样简洁。利用算得的数据 r r r s s s t t t S A S_A SA S B S_B SB S A B S_{AB} SAB S E S_E SE计算假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s H 03 : μ i j − μ i ⋅ − μ ⋅ j + μ = 0 , i = 1 , 2 , ⋯ , r , j = 1 , 2 , ⋯ , s H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s\\ H_{03}:\mu_{ij}-\mu_{i\cdot}-\mu_{\cdot j}+\mu=0,i=1,2,\cdots,r,j=1,2,\cdots,s H01:μiμ=0,i=1,2,,rH02:μjμ=0,j=1,2,,sH03:μijμiμj+μ=0,i=1,2,,r,j=1,2,,s
其中,令 μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^s\mu_{ij} μ=rs1i=1rj=1sμij μ i ⋅ = 1 s ∑ j = 1 s μ i j \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij} μi=s1j=1sμij μ ⋅ j = 1 r ∑ i = 1 r μ i j \mu_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^r\mu_{ij} μj=r1i=1rμij。接受 H 01 H_{01} H01意味着因素A对试验没有显著影响;接受 H 02 H_{02} H02,意味着因素B对试验结果没有显著影响;接受 H 03 H_{03} H03意味因素A和B对试验结果没有交互影响。
下列代码定义在显著水平 α \alpha α下检验假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03的函数。

def dfeTest(r, s, t, SA, SB, SAB, SE, alpha):F=(r*s*(t-1))*SA/SE/(r-1)				#H01检验统计量值accept1=ftestR(F, r-1, r*s*(t-1), alpha)F=(r*s*(t-1))*SB/SE/(s-1)				#H02检验统计量值accept2=ftestR(F, s-1,r*s*(t-1), alpha)F=(r*s*(t-1)*SAB)/((r-1)*(s-1)*SE)		#H03检验统计量值accept3=ftestR(F, (r-1)*(s-1), r*s*(t-1), alpha)return accept1, accept2, accept3

第2行设置假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / r s ( t − 1 ) \frac{S_A/(r-1)}{S_E/rs(t-1)} SE/rs(t1)SA/(r1)~ F ( r − 1 , r s ( t − 1 ) ) F(r-1,rs(t-1)) F(r1,rs(t1)),第3行调用函数ftestR计算假设 H 01 H_{01} H01的右侧检验。第4行设置 H 02 H_{02} H02的检验统计量值 S B / ( s − 1 ) S E / ( r s ( t − 1 ) ) \frac{S_B/(s-1)}{S_E/(rs(t-1))} SE/(rs(t1))SB/(s1)~ F ( s − 1 , r s ( t − 1 ) ) F(s-1,rs(t-1)) F(s1,rs(t1)),第5行计算假设 H 02 H_{02} H02右侧的检验。第6行设置 H 03 H_{03} H03的检验统计量值 S A B / ( r − 1 ) ( s − 1 ) S E / ( r s ( t − 1 ) ) \frac{S_{AB}/(r-1)(s-1)}{S_E/(rs(t-1))} SE/(rs(t1))SAB/(r1)(s1)~ F ( ( r − 1 ) ( s − 1 ) , r s ( t − 1 ) ) F((r-1)(s-1), rs(t-1)) F((r1)(s1),rs(t1)),第7行计算假设 H 03 H_{03} H03的右侧检验。
例1一火箭使用四种燃料,三种推进器作射程试验。每种燃料与每种推进器的组合各发射火箭两次,得射程(单位:海里)如下:

推进器 B 1 B_1 B1推进器 B 2 B_2 B2推进器 B 3 B_3 B3
燃料 A 1 A_1 A158.2,52.656.2,41.265.3,60.8
燃料 A 2 A_2 A249.1,42.854.1,50.551.6,48,4
燃料 A 3 A_3 A360.1,58.370.9,73.239.2,40.7
燃料 A 4 A_4 A475.8,71.558.2,51.048.7,41.4

假定火箭对应第 i i i种燃料,第 j j j种推进器的射程服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 1\leq i\leq4 1i4 1 ≤ j ≤ 3 1\leq j\leq3 1j3。希望通过对试验数据的分析,判断选择最佳的燃料与推进器的搭配( α = 0.05 \alpha=0.05 α=0.05)。
解: 下列代码计算本例。

alpha=0.05
X=np.array([[[58.2, 52.6],[56.2, 41.2],[65.3, 60.8]],[[49.1, 42.8],[54.1, 50.5],[51.6, 48.4]],[[60.1, 58.3],[70.9, 73.2],[39.2, 40.7]],[[75.8, 71.5],[58.2, 51.0],[48.7, 41.4]]])
r, s, t, SA, SB, SAB, SE=dfeDecompose(X)
H0=dfeTest(r, s, t, SA, SB, SAB, SE, alpha)
print(H0)

第1~5行按题面设置数据。第6行调用函数dfeDecompose分解样本总变差,得到数据 r r r s s s t t t S A S_A SA S B S_B SB S A B S_{AB} SAB S E S_E SE。第7行调用函数dfeTest计算假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03的检验。运行程序,输出

(False, False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03,燃料、推进器以及两者的组合都显著影响火箭的射程。由表观察可见燃料4和推进器1的组合有利于射程。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素等重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097614

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too