概率统计Python计算:双因素等重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素等重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素等重复试验的数据模型 X X X是一个结构为 r × s × t r\times s\times t r×s×t的3-维矩阵(张量),其中 X i j k X_{ijk} Xijk取自于总体指标 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) i = 1 , 2 , ⋯ , r , j = 1 , 2 , ⋯ , s , k = 1 , 2 , ⋯ , t i=1,2,\cdots,r,j=1,2,\cdots,s,k=1,2,\cdots,t i=1,2,,r,j=1,2,,s,k=1,2,,t。记 X ‾ = 1 r s t ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t X i j k X ‾ i j = 1 t ∑ k = 1 t X i j k , i = 1 , 2 , ⋯ ; r , j = 1 , 2 , ⋯ , s X ‾ i ⋅ = 1 s t ∑ j = 1 s ∑ k = 1 t X i j k = 1 s ∑ j = 1 s X ‾ i j , i = 1 , 2 , ⋯ , r X ‾ ⋅ j = 1 r t ∑ i = 1 r ∑ k = 1 t X i j k = 1 r ∑ i = 1 r X ‾ i j , j = 1 , 2 ⋯ , s S T = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ ) 2 \overline{X}=\frac{1}{rst}\sum_{i=1}^r\sum_{j=1}^s\sum_{k=1}^{t}X_{ijk}\\\overline{X}_{ij}=\frac{1}{t}\sum_{k=1}^tX_{ijk},i=1,2,\cdots;r,j=1,2,\cdots,s\\\overline{X}_{i\cdot}=\frac{1}{st}\sum_{j=1}^s\sum_{k=1}^tX_{ijk}=\frac{1}{s}\sum_{j=1}^s\overline{X}_{ij},i=1,2,\cdots,r\\ \overline{X}_{\cdot j}=\frac{1}{rt}\sum_{i=1}^r\sum_{k=1}^tX_{ijk}=\frac{1}{r}\sum_{i=1}^r\overline{X}_{ij},j=1,2\cdots,s\\ S_T=\sum_{i=1}^r\sum_{j=1}^s\sum_{k=1}^t(X_{ijk}-\overline{X})^2 X=rst1i=1rj=1sk=1tXijkXij=t1k=1tXijk,i=1,2,;r,j=1,2,,sXi=st1j=1sk=1tXijk=s1j=1sXij,i=1,2,,rXj=rt1i=1rk=1tXijk=r1i=1rXij,j=1,2,sST=i=1rj=1sk=1t(XijkX)2
其中, X ‾ \overline{X} X为样本总均值, X ‾ i ⋅ \overline{X}_{i\cdot} Xi为因素水平 A i A_i Ai对应的样本均值, X ‾ ⋅ j \overline{X}_{\cdot j} Xj为因素水平 B j B_j Bj对应的样本均值, X ‾ i j \overline{X}_{ij} Xij为组合因素样本均值, S T S_T ST样本总变差
S E = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ i j ) 2 S_E=\sum\limits_{i=1}^r\sum\limits_{j=1}^s\sum\limits_{k=1}^t(X_{ijk}-\overline{X}_{ij})^2 SE=i=1rj=1sk=1t(XijkXij)2,称为误差平方和 S A = s t ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=st\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=sti=1r(XiX)2,称为因素 A A A的效应平方和 S B = r t ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=rt\sum\limits_{j=1}^s(\overline{X}_{\cdot j}-\overline{X})^2 SB=rtj=1s(XjX)2,称为效应 B B B的平方和 S A B = t ∑ i = 1 r ∑ j = 1 s ( X ‾ i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_{AB}=t\sum\limits_{i=1}^r\sum\limits_{j=1}^s(\overline{X}_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SAB=ti=1rj=1s(XijXiXj+X)2,称为因素 A A A B B B的交互效应平方和
与单因素试验模型中样本总变差 S T S_T ST的分解类似,双因素等重复试验的样本总变差 S T S_T ST可分解为
S T = S E + S A + S B + S A B . S_T=S_E+S_A+S_B+S_{AB}. ST=SE+SA+SB+SAB.
下列代码定义双因素等重复试验的样本总变差 S T S_T ST的分解函数。

def dfeDecompose(X):(r,s,t)=X.shape									#模型数据结构X_bar=X.mean(axis=2)							#组合因素样本均值Xi_bar=X_bar.mean(axis=1).reshape(r,1)			#A因素水平样本均值Xj_bar=X_bar.mean(axis=0).reshape(1,s)			#B因素水平样本均值Xt_bar=X.mean()									#样本总均值ST=((X-Xt_bar)**2).sum()						#样本总变差SA=s*t*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*t*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SAB=t*((X_bar-Xi_bar-Xj_bar+Xt_bar)**2).sum()	#交互效应平方和SE=ST-SA-SB-SAB									#误差平方和return r, s, t, SA, SB, SAB, SE

第2行从X的结构中读取其宽度r,长度s和深度t。第3行计算因素水平 A i A_i Ai B j B_j Bj组合对应的样本均值 X ‾ i j \overline{X}_{ij} Xij 1 ≤ i ≤ r , 1 ≤ j ≤ s 1\leq i\leq r,1\leq j\leq s 1ir,1js)为X_bar。它是由参数X表示的张量按下标 k k k方向计算样本均值:X.mean(axis=2)所得,这是一个 r × s r\times s r×s的矩阵。第4行由X_bar按下标 j j j的方向计算因素水平 A i A_i Ai对应的样本均值 X ‾ i ⋅ \overline{X}_{i\cdot} Xi为Xi_bar,设置为一个 r × 1 r\times1 r×1的矩阵。相仿地,第5行由X_bar按下标 i i i的方向计算因素水平 B j B_j Bj对应的样本均值 X ‾ ⋅ j \overline{X}_{\cdot j} Xj为Xj_bar,设置为一个 1 × s 1\times s 1×s的矩阵。第6行计算总样本均值 X ‾ \overline{X} X为Xt_bar,这是一个实数。第7行计算总变差平方 S T = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 t ( X i j k − X ‾ ) 2 S_T=\sum\limits_{i=1}^r\sum\limits_{j=1}^s\sum\limits_{k=1}^t(X_{ijk}-\overline{X})^2 ST=i=1rj=1sk=1t(XijkX)2为ST。第8行计算因素 A A A的效应平方和 S A = s t ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=st\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=sti=1r(XiX)2为SA。第9行计算因素 B B B的效应平方和 S B = r t ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=rt\sum\limits_{j=1}^s(\overline{X}_{\cdot j}-\overline{X})^2 SB=rtj=1s(XjX)2为SB。第10行计算因素的交互效应平方和 S A B = t ∑ i = 1 r ∑ j = 1 s ( X ‾ i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_{AB}=t\sum\limits_{i=1}^r\sum\limits_{j=1}^s(\overline{X}_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SAB=ti=1rj=1s(XijXiXj+X)2为SAB,正因为我们将Xi_bar和Xj_bar设置成了 r × 1 r\times1 r×1 1 × s 1\times s 1×s的矩阵,所以此处的表达式才几乎和数学表达式一样简洁。利用算得的数据 r r r s s s t t t S A S_A SA S B S_B SB S A B S_{AB} SAB S E S_E SE计算假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s H 03 : μ i j − μ i ⋅ − μ ⋅ j + μ = 0 , i = 1 , 2 , ⋯ , r , j = 1 , 2 , ⋯ , s H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s\\ H_{03}:\mu_{ij}-\mu_{i\cdot}-\mu_{\cdot j}+\mu=0,i=1,2,\cdots,r,j=1,2,\cdots,s H01:μiμ=0,i=1,2,,rH02:μjμ=0,j=1,2,,sH03:μijμiμj+μ=0,i=1,2,,r,j=1,2,,s
其中,令 μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^s\mu_{ij} μ=rs1i=1rj=1sμij μ i ⋅ = 1 s ∑ j = 1 s μ i j \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij} μi=s1j=1sμij μ ⋅ j = 1 r ∑ i = 1 r μ i j \mu_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^r\mu_{ij} μj=r1i=1rμij。接受 H 01 H_{01} H01意味着因素A对试验没有显著影响;接受 H 02 H_{02} H02,意味着因素B对试验结果没有显著影响;接受 H 03 H_{03} H03意味因素A和B对试验结果没有交互影响。
下列代码定义在显著水平 α \alpha α下检验假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03的函数。

def dfeTest(r, s, t, SA, SB, SAB, SE, alpha):F=(r*s*(t-1))*SA/SE/(r-1)				#H01检验统计量值accept1=ftestR(F, r-1, r*s*(t-1), alpha)F=(r*s*(t-1))*SB/SE/(s-1)				#H02检验统计量值accept2=ftestR(F, s-1,r*s*(t-1), alpha)F=(r*s*(t-1)*SAB)/((r-1)*(s-1)*SE)		#H03检验统计量值accept3=ftestR(F, (r-1)*(s-1), r*s*(t-1), alpha)return accept1, accept2, accept3

第2行设置假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / r s ( t − 1 ) \frac{S_A/(r-1)}{S_E/rs(t-1)} SE/rs(t1)SA/(r1)~ F ( r − 1 , r s ( t − 1 ) ) F(r-1,rs(t-1)) F(r1,rs(t1)),第3行调用函数ftestR计算假设 H 01 H_{01} H01的右侧检验。第4行设置 H 02 H_{02} H02的检验统计量值 S B / ( s − 1 ) S E / ( r s ( t − 1 ) ) \frac{S_B/(s-1)}{S_E/(rs(t-1))} SE/(rs(t1))SB/(s1)~ F ( s − 1 , r s ( t − 1 ) ) F(s-1,rs(t-1)) F(s1,rs(t1)),第5行计算假设 H 02 H_{02} H02右侧的检验。第6行设置 H 03 H_{03} H03的检验统计量值 S A B / ( r − 1 ) ( s − 1 ) S E / ( r s ( t − 1 ) ) \frac{S_{AB}/(r-1)(s-1)}{S_E/(rs(t-1))} SE/(rs(t1))SAB/(r1)(s1)~ F ( ( r − 1 ) ( s − 1 ) , r s ( t − 1 ) ) F((r-1)(s-1), rs(t-1)) F((r1)(s1),rs(t1)),第7行计算假设 H 03 H_{03} H03的右侧检验。
例1一火箭使用四种燃料,三种推进器作射程试验。每种燃料与每种推进器的组合各发射火箭两次,得射程(单位:海里)如下:

推进器 B 1 B_1 B1推进器 B 2 B_2 B2推进器 B 3 B_3 B3
燃料 A 1 A_1 A158.2,52.656.2,41.265.3,60.8
燃料 A 2 A_2 A249.1,42.854.1,50.551.6,48,4
燃料 A 3 A_3 A360.1,58.370.9,73.239.2,40.7
燃料 A 4 A_4 A475.8,71.558.2,51.048.7,41.4

假定火箭对应第 i i i种燃料,第 j j j种推进器的射程服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 1\leq i\leq4 1i4 1 ≤ j ≤ 3 1\leq j\leq3 1j3。希望通过对试验数据的分析,判断选择最佳的燃料与推进器的搭配( α = 0.05 \alpha=0.05 α=0.05)。
解: 下列代码计算本例。

alpha=0.05
X=np.array([[[58.2, 52.6],[56.2, 41.2],[65.3, 60.8]],[[49.1, 42.8],[54.1, 50.5],[51.6, 48.4]],[[60.1, 58.3],[70.9, 73.2],[39.2, 40.7]],[[75.8, 71.5],[58.2, 51.0],[48.7, 41.4]]])
r, s, t, SA, SB, SAB, SE=dfeDecompose(X)
H0=dfeTest(r, s, t, SA, SB, SAB, SE, alpha)
print(H0)

第1~5行按题面设置数据。第6行调用函数dfeDecompose分解样本总变差,得到数据 r r r s s s t t t S A S_A SA S B S_B SB S A B S_{AB} SAB S E S_E SE。第7行调用函数dfeTest计算假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03的检验。运行程序,输出

(False, False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02 H 03 H_{03} H03,燃料、推进器以及两者的组合都显著影响火箭的射程。由表观察可见燃料4和推进器1的组合有利于射程。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素等重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097614

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1