《Python requests 库详解》

2024-08-22 21:36
文章标签 python 详解 requests

本文主要是介绍《Python requests 库详解》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

requests是一个非常流行的用于在 Python 中进行 HTTP 请求的库。以下是对requests库的详细介绍:

一、安装

可以使用 pip 进行安装:

pip install requests

二、主要功能特点

  1. 简洁易用的 API

    • requests提供了非常简洁直观的函数来发送各种 HTTP 请求,如get()post()put()delete()等,让开发者可以轻松地与各种 Web 服务进行交互。
    • 例如,发送一个 GET 请求只需要一行代码:response = requests.get('https://example.com')
  2. 支持多种请求方法

    • 涵盖了常见的 HTTP 请求方法,包括 GET、POST、PUT、DELETE、HEAD、OPTIONS 等。可以根据不同的需求选择合适的请求方法。
    • 例如,发送一个 POST 请求并传递数据:response = requests.post('https://example.com/api', data={'key': 'value'})
  3. 处理请求参数和 headers

    • 可以方便地添加请求参数和自定义 headers。
    • 对于 GET 请求,可以将参数作为字典传递给params参数:response = requests.get('https://example.com/api', params={'param1': 'value1', 'param2': 'value2'})
    • 对于 POST 请求,可以将数据作为字典传递给data参数或使用json参数传递 JSON 格式的数据。同时,可以通过headers参数设置自定义 headers:headers = {'User-Agent': 'MyApp/1.0'},response = requests.post('https://example.com/api', data={'key': 'value'}, headers=headers)
  4. 处理响应数据

    • requests返回的Response对象包含了丰富的信息,可以方便地获取响应状态码、响应 headers、响应内容等。
    • 可以通过response.status_code获取响应状态码,通过response.headers获取响应 headers,通过response.text获取响应的文本内容,通过response.json()获取 JSON 格式的响应数据(如果响应是 JSON 格式)。
  5. 处理异常

    • requests会自动处理一些常见的 HTTP 错误,如 404 Not Found、500 Internal Server Error 等,并抛出相应的异常。开发者可以使用try-except语句来捕获这些异常并进行处理。
    • 例如:
     try:response = requests.get('https://example.com/api')except requests.exceptions.RequestException as e:print(f"请求出现错误:{e}")
  1. 支持会话(Sessions)

    • requests提供了Session对象,可以在多个请求之间保持某些参数(如 cookies)的一致性。这对于需要登录或进行一系列相关请求的场景非常有用。
    • 例如:
     session = requests.Session()response1 = session.get('https://example.com/login', data={'username': 'user', 'password': 'pass'})response2 = session.get('https://example.com/profile')
  1. 支持超时设置

    • 可以通过timeout参数设置请求的超时时间,避免长时间等待无响应的请求。
    • 例如:response = requests.get('https://example.com/api', timeout=5)表示设置超时时间为 5 秒。
  2. 支持代理设置

    • 可以通过proxies参数设置代理服务器,用于访问被限制的资源或隐藏真实 IP 地址。
    • 例如:proxies = {'http': 'http://proxy.example.com:8080', 'https': 'https://proxy.example.com:8080'},response = requests.get('https://example.com/api', proxies=proxies)

三、应用场景

  1. 网页抓取和数据采集

    • 可以使用requests从网页上获取数据,进行网页抓取和数据采集任务。可以结合解析库如BeautifulSouplxml来提取所需的信息。
    • 例如,抓取一个网页的内容并提取其中的标题:
     import requestsfrom bs4 import BeautifulSoupresponse = requests.get('https://example.com')soup = BeautifulSoup(response.text, 'html.parser')title = soup.title.stringprint(title)
  1. 与 Web API 交互

    • 许多 Web 服务提供了 API,可以使用requests与这些 API 进行交互,获取数据或执行操作。
    • 例如,调用一个天气预报 API 获取天气信息:
     response = requests.get('https://api.weather.com/forecast', params={'location': 'New York'})weather_data = response.json()print(weather_data['description'])
  1. 自动化测试

    • 在自动化测试中,可以使用requests模拟用户请求,测试 Web 应用的功能和性能。
    • 例如,测试一个登录功能是否正常:
     response1 = requests.post('https://example.com/login', data={'username': 'user', 'password': 'pass'})assert response1.status_code == 200response2 = requests.get('https://example.com/profile')assert response2.status_code == 200

总之,requests库是一个功能强大、简洁易用的 Python 库,广泛应用于各种与 HTTP 请求相关的场景,大大简化了与 Web 服务进行交互的过程。

制作不易,请多多支持。

这篇关于《Python requests 库详解》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097454

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所