【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码

2024-08-22 19:44

本文主要是介绍【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

  • 对 stable diffusion 3 进行 ip-adapter 微调,正常训练 2 w 步后,loss 出现不稳定状态,并出现 Not a number
  • 问题定位:由于 loss 并没有变成无限大(梯度爆炸),那么应该是梯度消失。
    在这里插入图片描述

解决方案

  1. 降低学习率
  • 参考 huggingface 官方论坛1,其中有用户提到:“我也遇到过几次了。就我而言,我能够通过降低学习率来解决这个问题,但你的学习率已经很低了,所以不幸的是,我不太确定。”
  • 该博客中的学习率已经是 learning_rate=1e-6,而本文的情况是 1e-4 会在 200步 nan,8e-05 会在 600步 nan,降到 1e-5 稳定训练很长时间后,一觉醒来,发现在 2 w 步之后出现 nan 🫠
  1. 自动调节学习率

自动调节学习率的方式很多2,本文先从最简单地尝试起来,即“线性调节”

(1)先 warm up,在前 1/10 个训练步中,学习率从 0 调节到设定的 1e-5
(2)再衰减,在后续的训练步中,线性地从 1e-5 逐渐减为 0

线性调节学习率代码

# S-TODO 学习率调节器 lr_scheduler refer to https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.LambdaLRfrom torch.optim.lr_scheduler import LambdaLRdef get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):def lr_lambda(current_step):if current_step < num_warmup_steps:return float(current_step) / float(max(1.0, num_warmup_steps))return max(0.0, float(num_training_steps - current_step) / float(max(1.0, num_training_steps - num_warmup_steps)))return LambdaLR(optimizer, lr_lambda, last_epoch)
...optimizer = torch.optim.AdamW(xxx)# dataloadertrain_dataset = MyDataset(xxx)train_dataloader = torch.utils.data.DataLoader(xxx)# S-TODO Define the 学习率 的 schedulernum_training_steps = len(train_dataloader) * args.num_train_epochsnum_warmup_steps = int(0.1 * num_training_steps)  # 10% warmupscheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
...
训练代码
...# Backpropagateaccelerator.backward(loss)optimizer.step()# 更新下一步的学习率scheduler.step() optimizer.zero_grad()
...

  1. https://discuss.huggingface.co/t/text-to-image-training-loss-becomes-nan-all-of-a-sudden/35224 ↩︎

  2. https://datawhalechina.github.io/thorough-pytorch/%E7%AC%AC%E5%85%AD%E7%AB%A0/6.2%20%E5%8A%A8%E6%80%81%E8%B0%83%E6%95%B4%E5%AD%A6%E4%B9%A0%E7%8E%87.html ↩︎

这篇关于【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097221

相关文章

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave

Java抽象类Abstract Class示例代码详解

《Java抽象类AbstractClass示例代码详解》Java中的抽象类(AbstractClass)是面向对象编程中的重要概念,它通过abstract关键字声明,用于定义一组相关类的公共行为和属... 目录一、抽象类的定义1. 语法格式2. 核心特征二、抽象类的核心用途1. 定义公共接口2. 提供默认实