HP-lefthand底层结构详解及存储灾难数据恢复

2024-08-22 19:32

本文主要是介绍HP-lefthand底层结构详解及存储灾难数据恢复,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HP-lefthand底层结构详解及存储灾难数据恢复

一、HP-lefthand的特点

HP-lefhand是一款非常不错的SAN存储,使用iscsi协议为客户端分配空间。它支持RAID5RAID6以及RAID10。并且还支持卷快照,卷动态扩容等。常见的型号有:P4500,P4300,P4000等,基于市场占有量和软件定义存储的弊端,有一定的数据恢复市场需求。

HP-lefhand的存储系统是一款嵌入式LINUX系统,需要安装客户端软件才能配置lefthand

服务端:

wKioL1N8KGmAVegCAAEAOod5eD8105.jpg

客服端:

wKiom1N8KK_DC-nGAAMqo28mTfI063.jpg


二、HP-lefthand的存储结构

    Lefthand存储一共分为三个级别,这三个级别共同构成了整个存储,这三个几别分别如下:

物理磁盘:实际的物理磁盘。

逻辑磁盘:将多个物理磁盘组成一个逻辑的磁盘,也就是RAID

逻辑卷:在RAID之上,将不同RAID组成一个大空间,将大空间中不同的区域组成一个卷。

拓扑图如下 

wKioL1N8KKTxwIm1AAHwMmv76bE539.jpg

从整个拓扑图中可以看出,首先需要将物理磁盘组成逻辑磁盘RAID,然后将几个逻辑磁盘组成一个大的存储空间,最后将大的存储空间划分成若干个小块。用户使用的卷是由若干个不连续的小块组成的。也就是卷中存储的用户数据最终会被分成若干个片段存放在不同的逻辑磁盘中,而逻辑磁盘是由多个物理磁盘组成的。最终数据会被分成N个片段放在不通的物理磁盘中。

卷:用户的可用空间,上面说过卷由不同RAIDN个不连续的片段组成,卷中存储的是文件系统以及用户的数据。

RAID:由多个物理磁盘组成,大多是RAID5RAID6RAIDlefthand能识别的最小单元,也就是要想创建卷,必须先创建RAID。因为卷是由不同RAIDN个不连续的片段组成,所以RAID中需要记录它存储的片段是哪一个卷的,并且是卷的第几个片段。因此在RAID的前面会有一部分空间用来存储记录这些片段的MAP

    物理磁盘:物理磁盘中记录的是所有数据,并且数据是不连续的,如果上层是RAID5RAID6。那么物理磁盘中还包括校验数据。

 

三、存储灾难恢复

通过上面对lefthand底层存储的剖析,我们可以很清楚的知道用户的数据是如何存储到磁盘上的。也就意味着如果存储出现灾难,我们可以很快的知道哪里出现问题了。并且针对问题做出解决方案。

针对lefthand上不同的存储灾难表现,对应的数据恢复解决方案如下:

一:当物理磁盘和RAID都完好的情况下,由于用户误删除卷。可以按照lefthand存储中残留的map信息找回误删除的卷。北亚开发的frombyte recovery for Lefthand中也有此模块。二:当物理磁盘完好,RAID损坏的情况下,可能由于RAID中某块磁盘因为坏道过多而离线,导致RAID瘫痪,从而导致卷不可用。可以通过RAID重组、之后激活(需事先备份,确保方案的可回溯)的方法进行数据恢复。如果lefthand的操作系统无法恢复,也可以使用frombyte recovery for Lefthand对恢复后的RAID进行卷解释。

三:当卷中文件系统或文件出现故障时,实则与lefthand本身无关,可以通过在客户端直接做恢复。建议,恢复时增加另一台恢复主机通过iscsi multipath以只读连接。

 可参考文章:某法院HP-P4500存储数据恢复案例


作者:邓奇,北亚数据恢复中心工程师

邮件:dq@frombyte.com

电话:4006505808-801

 

这篇关于HP-lefthand底层结构详解及存储灾难数据恢复的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097184

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语