协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系

本文主要是介绍协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系



文章目录

  • 协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系
    • 引言
    • 协方差的概念与背景
    • 数学公式推导
    • 实例背景
    • 数据收集
    • 计算过程
    • 结果解释
    • 计算相关系数
    • 为什么使用协方差?
    • 结论
    • 商业启示


引言

在日常生活中,我们经常会遇到需要分析两个变量之间关系的情况。其中一个重要的统计量就是协方差,它可以帮助我们理解两个变量之间的线性关系方向和强度。本文将通过一个具体的实例——天气温度与冰淇淋销量之间的关系——来探讨协方差的应用,并详细介绍协方差的概念、背景、数学公式推导等内容。此外,我们还将讨论与协方差类似的概念,并探讨何时使用协方差以及为什么选择使用协方差。

协方差的概念与背景

定义:协方差是一个统计量,用于衡量两个变量之间线性关系的方向和强度。如果两个变量的值倾向于同时增加或减少,则它们具有正协方差;如果一个变量增加而另一个变量减少,则它们具有负协方差。协方差的值越大,表示两个变量之间的线性关系越强。

背景:在数据分析和统计建模中,了解两个变量间的关系是非常重要的。协方差提供了一种量化这种关系的方法。例如,在金融领域,协方差可以帮助投资者了解不同资产价格变动的趋势是否一致,这对于构建有效的投资组合非常重要。在本例中,我们将利用协方差来探索天气温度与冰淇淋销量之间的关系。

数学公式推导

设有两个随机变量 X X X Y Y Y,它们分别有一组观测值 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn。则 X X X Y Y Y 的协方差定义为:
Cov ( X , Y ) = 1 n ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=n1i=1n(xixˉ)(yiyˉ)
其中, x ˉ \bar{x} xˉ y ˉ \bar{y} yˉ 分别表示 X X X Y Y Y 的样本均值。

这个公式可以分解成以下几个步骤:

  1. 计算均值:对于每个变量,计算其样本均值。

    • x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i xˉ=n1i=1nxi
    • y ˉ = 1 n ∑ i = 1 n y i \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i yˉ=n1i=1nyi
  2. 计算偏差:对于每个数据点 ( x i , y i ) (x_i, y_i) (xi,yi),计算其与相应变量均值的偏差。

    • d x ( i ) = x i − x ˉ d_x(i) = x_i - \bar{x} dx(i)=xixˉ
    • d y ( i ) = y i − y ˉ d_y(i) = y_i - \bar{y} dy(i)=yiyˉ
  3. 计算乘积并求和:将每个数据点的偏差相乘,然后求和。

    • p i = d x ( i ) ⋅ d y ( i ) p_i = d_x(i) \cdot d_y(i) pi=dx(i)dy(i)
    • Cov ( X , Y ) = 1 n ∑ i = 1 n p i \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} p_i Cov(X,Y)=n1i=1npi

实例背景

假设你经营着一家冰淇淋店,并希望了解天气温度与冰淇淋销量之间的关系。通过收集一个月的数据,我们可以分析这两者之间的相关性,以便更好地规划库存和调整销售策略。

数据收集

我们收集了连续30天的温度(以摄氏度为单位)和对应的冰淇淋销量(以销售数量为单位)数据:

天数温度 (°C)冰淇淋销量
120100
222120
325140
426150
523125
624130
727160
828170
929180
1030190
1126155
1227165
1325145
1423120
1522110
1624130
1725145
1826155
1927165
2028175
2129185
2230195
2328170
2427160
2526150
2625140
2724130
2823120
2922110
3021100

计算过程

  1. 计算均值:

    • 温度均值 ( T ˉ \bar{T} Tˉ) = 20 + 22 + 25 + … + 21 30 \frac{20 + 22 + 25 + \ldots + 21}{30} 3020+22+25++21 ≈ 25.4
    • 销量均值 ( V ˉ \bar{V} Vˉ) = 100 + 120 + 140 + … + 100 30 \frac{100 + 120 + 140 + \ldots + 100}{30} 30100+120+140++100 ≈ 146.33
  2. 计算协方差:

    • 使用协方差公式: Cov ( T , V ) = 1 n ∑ i = 1 n ( t i − T ˉ ) ( v i − V ˉ ) \text{Cov}(T, V) = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{T})(v_i - \bar{V}) Cov(T,V)=n1i=1n(tiTˉ)(viVˉ)
  3. 实际计算:

    • 以第一组数据为例:

      • 温度偏差 d T ( 1 ) = 20 − 25.4 = − 5.4 d_T(1) = 20 - 25.4 = -5.4 dT(1)=2025.4=5.4
      • 销量偏差 d V ( 1 ) = 100 − 146.33 = − 46.33 d_V(1) = 100 - 146.33 = -46.33 dV(1)=100146.33=46.33
      • 乘积 p 1 = ( − 5.4 ) × ( − 46.33 ) = 250.182 p_1 = (-5.4) \times (-46.33) = 250.182 p1=(5.4)×(46.33)=250.182
    • 重复此过程,计算所有数据点的乘积并求和,然后除以数据点的数量 n n n

  4. 结果:

    • 经过计算,我们得到温度和销量之间的协方差大约为 70.48。

结果解释

  • 方向:由于协方差为正(70.48),这意味着温度和冰淇淋销量之间存在正向的线性关系。也就是说,随着温度的升高,冰淇淋销量也会增加。
  • 强度:仅凭协方差的值 70.48,我们不能直接判断这种关系的强度。为了更好地理解这种关系的强度,我们可以计算皮尔逊相关系数,它是协方差除以两个变量标准差的乘积。

计算相关系数

为了计算相关系数,我们需要知道温度和销量的标准差。假设我们已经计算出温度的标准差为 2.67,销量的标准差为 26.55。

  • 相关系数
    r = Cov ( T , V ) σ T ⋅ σ V = 70.48 2.67 × 26.55 ≈ 0.994 r = \frac{\text{Cov}(T, V)}{\sigma_T \cdot \sigma_V} = \frac{70.48}{2.67 \times 26.55} \approx 0.994 r=σTσVCov(T,V)=2.67×26.5570.480.994

这里我们得到了一个接近1的值,这意味着温度和销量之间存在非常强的正相关关系。其中, σ T \sigma_T σT σ V \sigma_V σV分别表示 T T T V V V的标准差。

为什么使用协方差?

尽管协方差可以提供关于两个变量之间线性关系方向的信息,但它有几个局限性:

  • 尺度依赖性:协方差的值受到变量尺度的影响,这意味着变量单位的不同会导致协方差值的差异。
  • 缺乏标准化:协方差值本身并不能直接告诉我们变量之间线性关系的强度。

替代概念

  • 皮尔逊相关系数:这是一个标准化的度量,消除了变量尺度的影响,并且取值范围为 [ − 1 , 1 ] [-1, 1] [1,1]。它可以更直观地反映变量之间的线性关系强度。
  • 斯皮尔曼等级相关系数:适用于非线性关系的度量,特别是在变量不是正态分布的情况下。
  • 肯德尔等级相关系数:类似于斯皮尔曼等级相关系数,但更适用于小样本情况。

何时使用协方差

  • 初步分析:在进行初步的数据探索时,协方差可以快速提供变量间关系的方向信息。
  • 联合分布:协方差矩阵在多元统计分析中非常有用,特别是在主成分分析、因子分析等高级统计方法中。

为什么选择协方差

  • 简单易用:协方差的计算相对简单,不需要复杂的数学知识。
  • 基础统计量:协方差是许多高级统计方法的基础,例如主成分分析等。

结论

通过分析,我们可以得出结论:

  • 当温度升高时,冰淇淋销量也会显著增加。这表明在炎热的日子里,顾客更倾向于购买冰淇淋。
  • 这种正相关关系非常强,相关系数接近 1,表明温度是影响冰淇淋销量的关键因素之一。

商业启示

基于这些发现,你可以采取相应的措施来优化业务运营,比如:

  • 在预测到气温较高的日子时,提前准备更多的冰淇淋库存。
  • 根据温度变化调整营销策略和促销活动。

这篇关于协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096584

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-