协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系

本文主要是介绍协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系



文章目录

  • 协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系
    • 引言
    • 协方差的概念与背景
    • 数学公式推导
    • 实例背景
    • 数据收集
    • 计算过程
    • 结果解释
    • 计算相关系数
    • 为什么使用协方差?
    • 结论
    • 商业启示


引言

在日常生活中,我们经常会遇到需要分析两个变量之间关系的情况。其中一个重要的统计量就是协方差,它可以帮助我们理解两个变量之间的线性关系方向和强度。本文将通过一个具体的实例——天气温度与冰淇淋销量之间的关系——来探讨协方差的应用,并详细介绍协方差的概念、背景、数学公式推导等内容。此外,我们还将讨论与协方差类似的概念,并探讨何时使用协方差以及为什么选择使用协方差。

协方差的概念与背景

定义:协方差是一个统计量,用于衡量两个变量之间线性关系的方向和强度。如果两个变量的值倾向于同时增加或减少,则它们具有正协方差;如果一个变量增加而另一个变量减少,则它们具有负协方差。协方差的值越大,表示两个变量之间的线性关系越强。

背景:在数据分析和统计建模中,了解两个变量间的关系是非常重要的。协方差提供了一种量化这种关系的方法。例如,在金融领域,协方差可以帮助投资者了解不同资产价格变动的趋势是否一致,这对于构建有效的投资组合非常重要。在本例中,我们将利用协方差来探索天气温度与冰淇淋销量之间的关系。

数学公式推导

设有两个随机变量 X X X Y Y Y,它们分别有一组观测值 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn。则 X X X Y Y Y 的协方差定义为:
Cov ( X , Y ) = 1 n ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=n1i=1n(xixˉ)(yiyˉ)
其中, x ˉ \bar{x} xˉ y ˉ \bar{y} yˉ 分别表示 X X X Y Y Y 的样本均值。

这个公式可以分解成以下几个步骤:

  1. 计算均值:对于每个变量,计算其样本均值。

    • x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i xˉ=n1i=1nxi
    • y ˉ = 1 n ∑ i = 1 n y i \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i yˉ=n1i=1nyi
  2. 计算偏差:对于每个数据点 ( x i , y i ) (x_i, y_i) (xi,yi),计算其与相应变量均值的偏差。

    • d x ( i ) = x i − x ˉ d_x(i) = x_i - \bar{x} dx(i)=xixˉ
    • d y ( i ) = y i − y ˉ d_y(i) = y_i - \bar{y} dy(i)=yiyˉ
  3. 计算乘积并求和:将每个数据点的偏差相乘,然后求和。

    • p i = d x ( i ) ⋅ d y ( i ) p_i = d_x(i) \cdot d_y(i) pi=dx(i)dy(i)
    • Cov ( X , Y ) = 1 n ∑ i = 1 n p i \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} p_i Cov(X,Y)=n1i=1npi

实例背景

假设你经营着一家冰淇淋店,并希望了解天气温度与冰淇淋销量之间的关系。通过收集一个月的数据,我们可以分析这两者之间的相关性,以便更好地规划库存和调整销售策略。

数据收集

我们收集了连续30天的温度(以摄氏度为单位)和对应的冰淇淋销量(以销售数量为单位)数据:

天数温度 (°C)冰淇淋销量
120100
222120
325140
426150
523125
624130
727160
828170
929180
1030190
1126155
1227165
1325145
1423120
1522110
1624130
1725145
1826155
1927165
2028175
2129185
2230195
2328170
2427160
2526150
2625140
2724130
2823120
2922110
3021100

计算过程

  1. 计算均值:

    • 温度均值 ( T ˉ \bar{T} Tˉ) = 20 + 22 + 25 + … + 21 30 \frac{20 + 22 + 25 + \ldots + 21}{30} 3020+22+25++21 ≈ 25.4
    • 销量均值 ( V ˉ \bar{V} Vˉ) = 100 + 120 + 140 + … + 100 30 \frac{100 + 120 + 140 + \ldots + 100}{30} 30100+120+140++100 ≈ 146.33
  2. 计算协方差:

    • 使用协方差公式: Cov ( T , V ) = 1 n ∑ i = 1 n ( t i − T ˉ ) ( v i − V ˉ ) \text{Cov}(T, V) = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{T})(v_i - \bar{V}) Cov(T,V)=n1i=1n(tiTˉ)(viVˉ)
  3. 实际计算:

    • 以第一组数据为例:

      • 温度偏差 d T ( 1 ) = 20 − 25.4 = − 5.4 d_T(1) = 20 - 25.4 = -5.4 dT(1)=2025.4=5.4
      • 销量偏差 d V ( 1 ) = 100 − 146.33 = − 46.33 d_V(1) = 100 - 146.33 = -46.33 dV(1)=100146.33=46.33
      • 乘积 p 1 = ( − 5.4 ) × ( − 46.33 ) = 250.182 p_1 = (-5.4) \times (-46.33) = 250.182 p1=(5.4)×(46.33)=250.182
    • 重复此过程,计算所有数据点的乘积并求和,然后除以数据点的数量 n n n

  4. 结果:

    • 经过计算,我们得到温度和销量之间的协方差大约为 70.48。

结果解释

  • 方向:由于协方差为正(70.48),这意味着温度和冰淇淋销量之间存在正向的线性关系。也就是说,随着温度的升高,冰淇淋销量也会增加。
  • 强度:仅凭协方差的值 70.48,我们不能直接判断这种关系的强度。为了更好地理解这种关系的强度,我们可以计算皮尔逊相关系数,它是协方差除以两个变量标准差的乘积。

计算相关系数

为了计算相关系数,我们需要知道温度和销量的标准差。假设我们已经计算出温度的标准差为 2.67,销量的标准差为 26.55。

  • 相关系数
    r = Cov ( T , V ) σ T ⋅ σ V = 70.48 2.67 × 26.55 ≈ 0.994 r = \frac{\text{Cov}(T, V)}{\sigma_T \cdot \sigma_V} = \frac{70.48}{2.67 \times 26.55} \approx 0.994 r=σTσVCov(T,V)=2.67×26.5570.480.994

这里我们得到了一个接近1的值,这意味着温度和销量之间存在非常强的正相关关系。其中, σ T \sigma_T σT σ V \sigma_V σV分别表示 T T T V V V的标准差。

为什么使用协方差?

尽管协方差可以提供关于两个变量之间线性关系方向的信息,但它有几个局限性:

  • 尺度依赖性:协方差的值受到变量尺度的影响,这意味着变量单位的不同会导致协方差值的差异。
  • 缺乏标准化:协方差值本身并不能直接告诉我们变量之间线性关系的强度。

替代概念

  • 皮尔逊相关系数:这是一个标准化的度量,消除了变量尺度的影响,并且取值范围为 [ − 1 , 1 ] [-1, 1] [1,1]。它可以更直观地反映变量之间的线性关系强度。
  • 斯皮尔曼等级相关系数:适用于非线性关系的度量,特别是在变量不是正态分布的情况下。
  • 肯德尔等级相关系数:类似于斯皮尔曼等级相关系数,但更适用于小样本情况。

何时使用协方差

  • 初步分析:在进行初步的数据探索时,协方差可以快速提供变量间关系的方向信息。
  • 联合分布:协方差矩阵在多元统计分析中非常有用,特别是在主成分分析、因子分析等高级统计方法中。

为什么选择协方差

  • 简单易用:协方差的计算相对简单,不需要复杂的数学知识。
  • 基础统计量:协方差是许多高级统计方法的基础,例如主成分分析等。

结论

通过分析,我们可以得出结论:

  • 当温度升高时,冰淇淋销量也会显著增加。这表明在炎热的日子里,顾客更倾向于购买冰淇淋。
  • 这种正相关关系非常强,相关系数接近 1,表明温度是影响冰淇淋销量的关键因素之一。

商业启示

基于这些发现,你可以采取相应的措施来优化业务运营,比如:

  • 在预测到气温较高的日子时,提前准备更多的冰淇淋库存。
  • 根据温度变化调整营销策略和促销活动。

这篇关于协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096584

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作