SpringBoot3 简单集成 Spring AI 并使用

2024-08-22 14:04

本文主要是介绍SpringBoot3 简单集成 Spring AI 并使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 准备
      • JDK17
      • api key
    • 创建项目
    • 编写配置文件
    • 创建controller
    • 启动并测试
    • 角色预设
    • 流式响应\异步响应
    • ChatModel(聊天模型)
    • ImageModel(文生图)
    • 文生语音
    • 语言翻译
    • 多模态
    • Function Calling (函数调用第三方API)

准备

JDK17

电脑要装有jdk17。对于有多个jdk需求的开发者来说。推荐使用jdk版本管理工具。
使用jabba在Windows上管理多个版本的JDK-详细教程

api key

前期需要准备一个api key。

没有的可以申请一个免费的。github上有免费的可以自己去申请。

创建项目

打开IDEA新建项目。
新建j项目
添加web和OpenAI的依赖。
在这里插入图片描述

编写配置文件

创建配置文件application.yaml,注意替换成自己的key和url。

spring:ai:openai:api-key: sk-xxxxxbase-url: https://api.xxx.tech

创建controller

示例使用官网文档里面的就行。
Spring AI 官方文档

下面是我手动修改了一部分的代码。

@RestController
@RequestMapping("/ai")
public class ChatController {private final ChatClient chatClient;public ChatController(ChatClient.Builder chatClientBuilder) {this.chatClient = chatClientBuilder.build();}@GetMapping("/chat")String generation(@RequestParam(value = "message") String message ) {return this.chatClient.prompt().user(message).call().content();}
}

启动并测试

可以看到测试是成功的。
在这里插入图片描述接下来是一些扩展的东西了。

角色预设

角色预设可以使用配置类进行全局预设,也可以单独预设。
1、全局预设
编写配置类

@Configuration
class Config {@BeanChatClient chatClient(ChatClient.Builder builder) {return builder.defaultSystem("你现在是一个资深的游戏专家").build();}}

再修改一下controller 的 ChatClient 的注入方式。

@RestController
@RequestMapping("/ai")
public class ChatController {@Resourceprivate  ChatClient chatClient;@GetMapping("/chat")String generation(@RequestParam(value = "message") String message ) {return this.chatClient.prompt().user(message).call().content();}
}

增加了角色预设之后的结果。好像有了角色预设确实专业一点点。

在这里插入图片描述

2、单独预设
在call调用之前,调用system方法就能预设。

    @GetMapping("/chat")String chat(@RequestParam(value = "message") String message ) {return this.chatClient.prompt().user(message).system("你是游戏测评大师") // 单独预设角色.call().content();}

流式响应\异步响应

让stream您获得异步响应,如下所示

    @GetMapping("/streamChat")Flux<String> streamChat(@RequestParam(value = "message") String message ) {Flux<String> output = chatClient.prompt().user(message).stream().content();return output;}

在 1.0.0 M2 中,我们将提供一种便捷方法,让您使用反应式stream()方法返回 Java 实体。(当前使用的还是M1,M2还没出来)

在浏览器测试的话可能会出现乱码,解决方法是GetMapping注解增加produces属性。在PostMan测试并没有乱码。

    @GetMapping(value = "/streamChat",produces = "text/html;charset=UTF-8")

ChatModel(聊天模型)

上面使用的是chatClient是AI模型最基本的功能,所以SpringAI对其做了封装,chatClient是和大模型是解耦的,不管使用哪个大模型,client都是能够使用的。而ChatModel接口确是大模型厂商自己实现的,当你引入starter时,它对应的AutoConfiguration会将ChatModel自动注入到Spring容器。

每个厂商的ChatOptions可能不一样,对应的需要去官网查看。

    @Resourceprivate ChatModel chatModel;@GetMapping("/chat/model")String chatModel(@RequestParam(value = "message") String message ) {ChatResponse response = chatModel.call(new Prompt(message,OpenAiChatOptions.builder().withModel("gpt-4o").withTemperature(0.4f).build()));return response.getResult().getOutput().getContent();}

ImageModel(文生图)

    @Resourceprivate OpenAiImageModel openAiImageModel;@GetMapping("/text2Image")String text2Image(@RequestParam(value = "message") String message ){ImageResponse response = openAiImageModel.call(new ImagePrompt(message,OpenAiImageOptions.builder().withQuality("hd") // hd表示高清.withN(1) // 图片数量.withHeight(1024) // 图片高度.withWidth(1024).build()) // 图片宽度);return response.getResult().getOutput().getUrl(); // 支持返回base64格式的图片}

文生语音

和上面一样的套路,我直接把官网文档搬过来。

OpenAiAudioSpeechOptions speechOptions = OpenAiAudioSpeechOptions.builder().withModel("tts-1").withVoice(OpenAiAudioApi.SpeechRequest.Voice.ALLOY).withResponseFormat(OpenAiAudioApi.SpeechRequest.AudioResponseFormat.MP3).withSpeed(1.0f).build();SpeechPrompt speechPrompt = new SpeechPrompt("Hello, this is a text-to-speech example.", speechOptions);
SpeechResponse response = openAiAudioSpeechModel.call(speechPrompt);

语言翻译

OpenAiAudioApi.TranscriptResponseFormat responseFormat = OpenAiAudioApi.TranscriptResponseFormat.VTT;OpenAiAudioTranscriptionOptions transcriptionOptions = OpenAiAudioTranscriptionOptions.builder().withLanguage("en").withPrompt("Ask not this, but ask that").withTemperature(0f).withResponseFormat(responseFormat).build();
AudioTranscriptionPrompt transcriptionRequest = new AudioTranscriptionPrompt(audioFile, transcriptionOptions);
AudioTranscriptionResponse response = openAiTranscriptionModel.call(transcriptionRequest);

多模态

模态是指模型同时理解和处理来自各种来源的信息的能力,包括文本、图像、音频和其他数据格式。

Spring AI Message API 提供了支持多模式 LLM 所需的所有抽象。

在这里插入图片描述代码如下,可以上传图片问问题。

byte[] imageData = new ClassPathResource("/multimodal.test.png").getContentAsByteArray();var userMessage = new UserMessage("Explain what do you see in this picture?", // contentList.of(new Media(MimeTypeUtils.IMAGE_PNG, imageData))); // mediaChatResponse response = chatModel.call(new Prompt(List.of(userMessage)));

Function Calling (函数调用第三方API)

人工智能模型中功能支持的集成,允许模型请求执行客户端功能,从而根据需要动态访问必要的信息或执行任务。

可以借助Function Calling实现动态的数据的获取,通过api接口返回的数据参与对话。
在这里插入图片描述想要使用Function,首先需要定义Function,并注册为Bean。

在下面的Function中我定义了一个三方接口,用来获取最新的彩票开奖号码。

package com.sifan.springai.function;import com.fasterxml.jackson.annotation.JsonClassDescription;
import org.json.JSONObject;
import org.springframework.context.annotation.Description;
import org.springframework.http.ResponseEntity;
import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;import java.util.List;
import java.util.function.Function;//@Description作用是可帮助 AI 模型确定要调用哪个客户端函数
@Description("获取最新通用中奖号码信息")
// Bean的名字是lotteryFunction
@Component(value = "lotteryFunction")
public class LotteryFunction implements Function<LotteryFunction.Request, LotteryFunction.Response>  {// 密封类,相当于加了Lombok的@Data注解的POJO类@JsonClassDescription("目前提供八种彩种,ssq:双色球,qlc:七乐彩,fc3d:福彩3D,cjdlt:超级大乐透,qxc:七星彩,pl3:排列3,pl5:排列(5),kl8:快乐8")public record Request(String code){}public record Response(String openCode){}@Overridepublic Response apply(Request request) {// 判空if(request.code.equals("")){return new Response("参数为空,请输入彩票种类标识");}List<String> codeList = List.of("ssq", "qlc", "fc3d", "cjdlt", "qxc", "pl3", "pl5", "kl8");// 判断code是否在codeList中if(!codeList.contains(request.code)){return new Response("请输入正确的彩票种类标识,只支持:"+codeList);}String openCode = getOpenCode(request.code);return new Response(openCode);}/*** api接口文档地址:https://www.mxnzp.com/doc/detail?id=3*获取最新通用本期中奖号码* @param code 彩票种类标识,目前提供八种彩种,ssq:双色球,qlc:七乐彩,fc3d:福彩3D,cjdlt:超级大乐透,qxc:七星彩,pl3:排列3,pl5:排列(5),kl8:快乐8* @return*/private String getOpenCode(String code){String url = String.format("https://www.mxnzp.com/api/lottery/common/latest?code=%s&app_secret=%s&app_id=%s",code, getAppSecret(), getAppId());RestTemplate restTemplate = new RestTemplate();ResponseEntity<String> responseEntity = restTemplate.getForEntity(url, String.class);String body = responseEntity.getBody();JSONObject bodyJson = new JSONObject(body);JSONObject data =bodyJson.getJSONObject("data");return data.getString("openCode");}private String getAppSecret(){return "xxxxxx"; // 换成自己的}private String getAppId(){return "xxxxx";  // 换成自己的}
}

Controller层如何使用呢,在控制层只需要调用withFunction并且指定Bean名字就行。代码如下。

    @Resourceprivate ChatModel chatModel;@GetMapping("/chat/model/fc")String chatModelFC(@RequestParam(value = "message") String message ) {ChatResponse response = chatModel.call(new Prompt(message,OpenAiChatOptions.builder().withFunction("lotteryFunction") // 这里指定Bean名字.withModel("gpt-3.5-turbo").withTemperature(0.4f).build()));return response.getResult().getOutput().getContent();}

下面来测试一下。

在这里插入图片描述

这篇关于SpringBoot3 简单集成 Spring AI 并使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096481

相关文章

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

SpringBoot简单整合ElasticSearch实践

《SpringBoot简单整合ElasticSearch实践》Elasticsearch支持结构化和非结构化数据检索,通过索引创建和倒排索引文档,提高搜索效率,它基于Lucene封装,分为索引库、类型... 目录一:ElasticSearch支持对结构化和非结构化的数据进行检索二:ES的核心概念Index:

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时