【具体数学 Concrete Mathematics】1.1 递归问题 讲义

2024-08-22 13:20

本文主要是介绍【具体数学 Concrete Mathematics】1.1 递归问题 讲义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【具体数学 Concrete Mathematics】1.1 递归问题 导入

本节(1.1、1.1.1-1.1.3)主要围绕《具体数学》第一章 递归问题(Recurrent Problems)讲义部分的三个问题展开,分别是汉诺塔、平面上的直线以及约瑟夫问题。下面简单介绍一下递归问题和数学归纳法,做一个简单的导入,具体的递归应用可以在三个例子(1.1.1-1.1.3)中获得更好的体现:

1. 递归问题:

递归问题的主要思想是将大的问题分解成小的问题,然后只要提供最小的问题的具体解决方案即可。这样实际上递归方案并没有给出原问题的具体解决方案,而是给了一个解决问题的步骤。
一个典型的例子是《线性代数》中计算行列式的值 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij。这里就是将计算 n n n维行列式 D D D分解成 n n n n − 1 n-1 n1维行列式 A i j A_{ij} Aij的计算。最后可以展开到 1 1 1维行列式 ∣ x ∣ = x |x|=x x=x。整个过程中直接计算的只有最小的问题模块—— 1 1 1维行列式,其他维度都是直接根据递归方案来计算的。
通过这个小例子我们也可以看到递归方案只有到最后一步才真正解决具体问题,此前我们都假设更小的问题答案已知,如 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij中,我们假设 A i j A_{ij} Aij都已知,但是其实 A i j A_{ij} Aij的值还需要进一步递归直到 1 1 1维行列式才能计算出具体值。
如果这个例子没能理解,请看下面三个具体的例子,然后再回来看这个小例子,相信读者会有新的理解。
DAij

2. 数学归纳法

数学归纳法是证明某个命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立的一种方法。
首先我们在 n = n 0 n=n_0 n=n0时,证明 P ( n 0 ) P(n_0) P(n0)成立,这一步称为基础(Basis);
接着对于 n > n 0 n>n_0 n>n0,假设 n 0 n_0 n0 n − 1 n-1 n1之间(包含两端)的所有值都证明成立,即 P ( n 0 ) , … , P ( n − 1 ) P(n_0),\dots,P_(n-1) P(n0),,P(n1)都被证明成立,在此基础上证明 P ( n ) P(n) P(n)成立,这一步称为归纳(Induction)。
由此可以证得命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立。
下面举两个例子:

例子1: 证明 P ( n ) : 1 + 2 + ⋯ + n = n ( n + 1 ) 2 P(n):1+2+\cdots+n=\frac{n(n+1)}{2} P(n):1+2++n=2n(n+1)对任意 n ≥ 1 n\ge 1 n1成立。
证明:
Basis: P ( 1 ) = 1 = 1 + 2 2 P(1)=1=\frac{1+2}{2} P(1)=1=21+2
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有 P ( n − 1 ) = 1 + 2 + ⋯ + n − 1 = ( n − 1 ) n 2 P(n-1)=1+2+\cdots+n-1=\frac{(n-1)n}{2} P(n1)=1+2++n1=2(n1)n
那么 P ( n ) = 1 + 2 + ⋯ + ( n − 1 ) + n = P ( n − 1 ) + n = ( n − 1 ) n 2 + n = n ( n + 1 ) 2 P(n)=1+2+\cdots+(n-1)+n=P(n-1)+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2} P(n)=1+2++(n1)+n=P(n1)+n=2(n1)n+n=2n(n+1)
由此原命题得证。

例子2(习题1): 证明所有的马都是同样的颜色。
证明:假设有 n n n匹马,下面证明 P ( n ) : P(n): P(n): n n n匹马都是同样的颜色对任意 n ≥ 1 n\ge 1 n1成立。
Basis: P ( 1 ) P(1) P(1)只有1匹马,显然其与自身有相同的颜色。
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有任意 n − 1 n-1 n1匹马都是相同的颜色。
那么根据归纳假设可知, 1 ∼ ( n − 1 ) 1\sim (n-1) 1(n1)号马颜色相同, 2 ∼ n 2\sim n 2n号马颜色相同,而处于中间位置标号 2 ∼ ( n − 1 ) 2\sim (n-1) 2(n1)的马在不同的马群中不可能改变颜色,因为这是马,不是变色龙。故而根据传递性可知,标号 1 ∼ n 1\sim n 1n的马颜色相同。
由此原命题得证。

例子2的证明其实是存在问题的,读者能发现吗?
这个证明绕开了2匹马的情况,因为根据归纳证明,当 n = 2 n=2 n=2时, 1 1 1 2 2 2之间不存在任何中间标号的马匹,由此可知Induction在 n = 2 n=2 n=2时不成立。

这篇关于【具体数学 Concrete Mathematics】1.1 递归问题 讲义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1096388

相关文章

C#中SortedSet的具体使用

《C#中SortedSet的具体使用》SortedSet是.NETFramework4.0引入的一个泛型集合类,它实现了一个自动排序的集合,内部使用红黑树数据结构来维护元素的有序性,下面就来介绍一下如... 目录基础概念主要特性创建和初始化基本创建方式自定义比较器基本操作添加和删除元素查询操作范围查询集合运

C# Opacity 不透明度的具体使用

《C#Opacity不透明度的具体使用》本文主要介绍了C#Opacity不透明度的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录WinFormsOpacity以下是一些使用Opacity属性的示例:设置窗体的透明度:设置按钮的透

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

MySQL磁盘空间不足问题解决

《MySQL磁盘空间不足问题解决》本文介绍查看空间使用情况的方式,以及各种空间问题的原因和解决方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录查看空间使用情况Binlog日志文件占用过多表上的索引太多导致空间不足大字段导致空间不足表空间碎片太多导致空间不足临时表空间

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

Java中InputStream重复使用问题的几种解决方案

《Java中InputStream重复使用问题的几种解决方案》在Java开发中,InputStream是用于读取字节流的类,在许多场景下,我们可能需要重复读取InputStream中的数据,这篇文章主... 目录前言1. 使用mark()和reset()方法(适用于支持标记的流)2. 将流内容缓存到字节数组

Nginx禁用TLSv1.0 1.1改为TLSv1.2 1.3的操作方法

《Nginx禁用TLSv1.01.1改为TLSv1.21.3的操作方法》使用MozillaSSL配置工具生成配置,修改nginx.conf的ssl_protocols和ssl_ciphers,通... 目录方法一:方法二:使用 MoziChina编程lla 提供的 在线生成SSL配置工具,根据自己的环境填充对应的

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

解决Failed to get nested archive for entry BOOT-INF/lib/xxx.jar问题

《解决FailedtogetnestedarchiveforentryBOOT-INF/lib/xxx.jar问题》解决BOOT-INF/lib/xxx.jar替换异常需确保路径正确:解... 目录Failed to get nested archive for entry BOOT-INF/lib/xxx