【具体数学 Concrete Mathematics】1.1 递归问题 讲义

2024-08-22 13:20

本文主要是介绍【具体数学 Concrete Mathematics】1.1 递归问题 讲义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【具体数学 Concrete Mathematics】1.1 递归问题 导入

本节(1.1、1.1.1-1.1.3)主要围绕《具体数学》第一章 递归问题(Recurrent Problems)讲义部分的三个问题展开,分别是汉诺塔、平面上的直线以及约瑟夫问题。下面简单介绍一下递归问题和数学归纳法,做一个简单的导入,具体的递归应用可以在三个例子(1.1.1-1.1.3)中获得更好的体现:

1. 递归问题:

递归问题的主要思想是将大的问题分解成小的问题,然后只要提供最小的问题的具体解决方案即可。这样实际上递归方案并没有给出原问题的具体解决方案,而是给了一个解决问题的步骤。
一个典型的例子是《线性代数》中计算行列式的值 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij。这里就是将计算 n n n维行列式 D D D分解成 n n n n − 1 n-1 n1维行列式 A i j A_{ij} Aij的计算。最后可以展开到 1 1 1维行列式 ∣ x ∣ = x |x|=x x=x。整个过程中直接计算的只有最小的问题模块—— 1 1 1维行列式,其他维度都是直接根据递归方案来计算的。
通过这个小例子我们也可以看到递归方案只有到最后一步才真正解决具体问题,此前我们都假设更小的问题答案已知,如 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij中,我们假设 A i j A_{ij} Aij都已知,但是其实 A i j A_{ij} Aij的值还需要进一步递归直到 1 1 1维行列式才能计算出具体值。
如果这个例子没能理解,请看下面三个具体的例子,然后再回来看这个小例子,相信读者会有新的理解。
DAij

2. 数学归纳法

数学归纳法是证明某个命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立的一种方法。
首先我们在 n = n 0 n=n_0 n=n0时,证明 P ( n 0 ) P(n_0) P(n0)成立,这一步称为基础(Basis);
接着对于 n > n 0 n>n_0 n>n0,假设 n 0 n_0 n0 n − 1 n-1 n1之间(包含两端)的所有值都证明成立,即 P ( n 0 ) , … , P ( n − 1 ) P(n_0),\dots,P_(n-1) P(n0),,P(n1)都被证明成立,在此基础上证明 P ( n ) P(n) P(n)成立,这一步称为归纳(Induction)。
由此可以证得命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立。
下面举两个例子:

例子1: 证明 P ( n ) : 1 + 2 + ⋯ + n = n ( n + 1 ) 2 P(n):1+2+\cdots+n=\frac{n(n+1)}{2} P(n):1+2++n=2n(n+1)对任意 n ≥ 1 n\ge 1 n1成立。
证明:
Basis: P ( 1 ) = 1 = 1 + 2 2 P(1)=1=\frac{1+2}{2} P(1)=1=21+2
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有 P ( n − 1 ) = 1 + 2 + ⋯ + n − 1 = ( n − 1 ) n 2 P(n-1)=1+2+\cdots+n-1=\frac{(n-1)n}{2} P(n1)=1+2++n1=2(n1)n
那么 P ( n ) = 1 + 2 + ⋯ + ( n − 1 ) + n = P ( n − 1 ) + n = ( n − 1 ) n 2 + n = n ( n + 1 ) 2 P(n)=1+2+\cdots+(n-1)+n=P(n-1)+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2} P(n)=1+2++(n1)+n=P(n1)+n=2(n1)n+n=2n(n+1)
由此原命题得证。

例子2(习题1): 证明所有的马都是同样的颜色。
证明:假设有 n n n匹马,下面证明 P ( n ) : P(n): P(n): n n n匹马都是同样的颜色对任意 n ≥ 1 n\ge 1 n1成立。
Basis: P ( 1 ) P(1) P(1)只有1匹马,显然其与自身有相同的颜色。
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有任意 n − 1 n-1 n1匹马都是相同的颜色。
那么根据归纳假设可知, 1 ∼ ( n − 1 ) 1\sim (n-1) 1(n1)号马颜色相同, 2 ∼ n 2\sim n 2n号马颜色相同,而处于中间位置标号 2 ∼ ( n − 1 ) 2\sim (n-1) 2(n1)的马在不同的马群中不可能改变颜色,因为这是马,不是变色龙。故而根据传递性可知,标号 1 ∼ n 1\sim n 1n的马颜色相同。
由此原命题得证。

例子2的证明其实是存在问题的,读者能发现吗?
这个证明绕开了2匹马的情况,因为根据归纳证明,当 n = 2 n=2 n=2时, 1 1 1 2 2 2之间不存在任何中间标号的马匹,由此可知Induction在 n = 2 n=2 n=2时不成立。

这篇关于【具体数学 Concrete Mathematics】1.1 递归问题 讲义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096388

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

python pymodbus模块的具体使用

《pythonpymodbus模块的具体使用》pymodbus是一个Python实现的Modbus协议库,支持TCP和RTU通信模式,支持读写线圈、离散输入、保持寄存器等数据类型,具有一定的参考价值... 目录一、详解1、 基础概念2、核心功能3、安装与设置4、使用示例5、 高级特性6、注意事项二、代码示例

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access