半直接法视觉里程计(SVO)实践

2024-08-22 10:18

本文主要是介绍半直接法视觉里程计(SVO)实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要分两部分,编译安装SVO后对官方数据集的测试以及实验室摄像头的测试。

一.SVO安装及测试

在官方github首页上有比较详细的安装说明,不过部分步骤略有问题,此处给出成功安装的步骤。操作系统为ubuntu16.04并且安装ROS系统。

共创建两个工作空间,一个存放各种库,包括fastg2o以及Sophus,另一个存放SVO代码。

1.安装Sophus库

按照步骤即可

cd workspace

git clone https://github.com/strasdat/Sophus.git

cd Sophus

git checkout a621ff

mkdir build

cd build

cmake ..

make

2.安装角点检测库

同样按照步骤即可

cd workspace

git clone https://github.com/uzh-rpg/fast.git

cd fast

mkdir build

cd build

cmake ..

make

3.安装g2o库(选择性)

这一步同样按照官网步骤即可,另外需要安装的依赖库有cmake, libeigen3-dev, libsuitesparse-dev, libqt4-dev, qt4-qmake, libqglviewer-qt4-dev,使用apt-get安装即可。

cd workspace

git clone https://github.com/RainerKuemmerle/g2o.git

cd g2o

mkdir build

cd build

cmake ..

make

sudo make install

需要注意的是,按照官方说明安装的eigen库并不能在当前SVO版本中工作,解决办法是安装eigen3.2.10。(此问题在github上的issue栏中有说明)eigen下载链接

http://bitbucket.org/eigen/eigen/get/3.2.10.tar.bz2

下载后运行如下命令编译安装

tar -xf [name of the file]

cd [name of the file]

mkdir build

cd build

cmake ..

sudo make install

4.按照官网安装vikit和ROS依赖项

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_vikit.git

sudo apt-get install ros-hydro-cmake-modules

命令中将hydro替换为自己对应的发行版即可,此处为kinect

5.编译代码

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_svo.git

如果安装了g2o则需要将svo/CMakeLists.txt文件中的HAVE_G2O变量置为TRUE,添加环境变量G2O_ROOT

gedit  ~/.bashrc

添加export G2O_ROOT = $HOME/SLAM/SVO/g2o

使用catkin_make编译SVO代码。

6.测试数据集

下载地址 

rpg.ifi.uzh.ch/datasets/airground_rig_s3_2013-03-18_21-38-48.bag

一共需要开启四个命令行窗口,首先启动ROS,运行roscore

然后是roslaunch svo_ros test_rig3.launch,运行此命令前需要运行source devel/setup.bash

再然后是运行

rosrun rviz rviz -d <PATH TO rpg_svo>/svo_ros/rviz_config.rviz

开启GUI查看结果。

最后运行

rosbag play airground_rig_s3_2013-03-18_21-38-48.bag

加载数据集,可以在GUI中看到数据集运行的效果。

二.摄像头测试

测试摄像头前需要标定,使用atan模型的效果较好,可以在PTAM中进行摄像头的标定,不过由于PTAM没有安装成功,因此这里使用SVO中原有的参数,只要在参数文件中把图像宽度和高度做修改即可。

1.图像采集

使用ROS提供的usb camera节点程序采集摄像头图像,下载编译后运行

rosrun usb_cam usb_cam_node开始采集图像并发布,运行如下命令查看原始彩色图像

rosrun image_view image_view image:=/usb_cam/image_raw

2.图像转换

SVO使用的图像为单通道灰度图,摄像头输出为RGB彩色图像,因此还需要一个节点程序订阅彩色图像后转换成灰度图并发布。创建ROS节点程序可以参考:

http://www.cnblogs.com/blue35sky/p/6078771.html

注意创建时添加对应的依赖项,如opencv相关的依赖项cv_bridgeimage_transport。转换后的图像为/mono_image,运行图像转换程序

rosrun cam_test cam_test_node并在第一步查看图像命令中修改需要查看的图像主题名即可看到灰度图像。

转换代码:

#include <ros/ros.h>
#include <opencv2/opencv.hpp>
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include "ros/ros.h"
#include "std_msgs/String.h"ros::Publisher image_pub ;void chatterCallback(const sensor_msgs::ImageConstPtr& msg)
{cv_bridge::CvImagePtr  cv_ptr;cv_ptr = cv_bridge::toCvCopy(msg,sensor_msgs::image_encodings::BGR8);cv::Mat image_gray;cv::cvtColor(cv_ptr->image, image_gray,CV_BGR2GRAY);//灰度化cv_bridge::CvImage  cvi;sensor_msgs::Image  ros_img;ros::Time time=ros::Time::now();cvi.header.stamp = time;cvi.header.frame_id = "image";cvi.encoding = "mono8";cvi.image = image_gray;cvi.toImageMsg(ros_img);image_pub.publish(cvi.toImageMsg());
}int main(int argc, char **argv)
{ros::init(argc, argv, "img_tran");ros::NodeHandle n;ros::Subscriber sub = n.subscribe("/usb_cam/image_raw", 1000, chatterCallback);image_pub = n.advertise<sensor_msgs::Image>("/mono_image", 1000);ros::spin();return 0;
}

3.启动SVO测试

可以直接在原有的test_rig3.launch文件中稍作修改后启动SVO,将摄像头主题的值修改为/mono_image,即上一步发布的灰度图。下面的摄像头校准文件,如果做了校准,可以写成param文件夹中文件的格式,之后在启动文件中将摄像头校准文件参数改成自己的文件就好。一般情况下只有这两处需要修改,之后就可以启动SVO,启动GUI查看位姿估计结果。这里由于摄像头没有校准,因此成功率不高,经常提示特征点太少,不过成功的情况下位姿估计效果还是不错的。

这篇关于半直接法视觉里程计(SVO)实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095984

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1