Android10.0(Q) 网络自动校时bug修改

2024-08-22 06:18

本文主要是介绍Android10.0(Q) 网络自动校时bug修改,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题现象

联网后系统时间依旧显示不对,和系统校时服务器有关系,之前低版本也修改过这个问题来着

修改方法

和之前低版本比对发现,以前的 NetworkTimeUpdateService 已经更名为 NewNetworkTimeUpdateService,而且代码变动不小,根据之前修改问题不大。

frameworks/base/services/core/java/com/android/server/NewNetworkTimeUpdateService.java

import java.io.PrintWriter;//M: For multiple NTP server retry
import java.util.ArrayList;
import android.os.AsyncTask;
import android.net.NetworkInfo;
+/*** Monitors the network time and updates the system time if it is out of sync* and there hasn't been any NITZ update from the carrier recently.
@@ -98,6 +103,18 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUp// connection to happen.private int mTryAgainCounter;//UGG add ,add ntp servers [S]                                         private static final String[] NTPSERVERLIST =  new String[]{"s1b.time.edu.cn","ntp3.aliyun.com","ntp4.aliyun.com","ntp5.aliyun.com",                                };                                        private AsyncTask ntpTimeTask;  private boolean isNtpTimeTaskRunning;  //UGG add ,add ntp servers [E] public NewNetworkTimeUpdateService(Context context) {mContext = context;mTime = NtpTrustedTime.getInstance(context);
@@ -138,6 +155,7 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUpprivate void registerForTelephonyIntents() {IntentFilter intentFilter = new IntentFilter();intentFilter.addAction(TelephonyIntents.ACTION_NETWORK_SET_TIME);intentFilter.addAction(ConnectivityManager.CONNECTIVITY_ACTION);mContext.registerReceiver(mNitzReceiver, intentFilter);}@@ -249,10 +267,49 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUpif (DBG) Log.d(TAG, "Received " + action);if (TelephonyIntents.ACTION_NETWORK_SET_TIME.equals(action)) {mNitzTimeSetTime = SystemClock.elapsedRealtime();}else if (ConnectivityManager.CONNECTIVITY_ACTION.equals(action)) {//UGG add ,add ntp servers [S]                                         NetworkInfo info = mCM.getActiveNetworkInfo();  if(info != null && info.isAvailable()) {String name = info.getTypeName();Log.d(TAG, "current networkType" + name);if(!isNtpTimeTaskRunning){isNtpTimeTaskRunning=true;new NtpTimeThread().start();}} else {Log.d(TAG, "no available network");// if(ntpTimeTask!=null){//     ntpTimeTask.cancel(true);// }}//UGG add ,add ntp servers [E]                                         }}};//UGG add ,add ntp servers [S]                                         public class NtpTimeThread extends Thread {@Overridepublic void run() {super.run();for(int i=0;i<NTPSERVERLIST.length;i++){try{sleep(1000);boolean result=GetNtpTIme.GetLocalNtpTime(NTPSERVERLIST[i]);Log.i(TAG,"NtpTimeThread result "+result);if(result){break;}}catch(Exception e){}}isNtpTimeTaskRunning=false;}}//UGG add ,add ntp servers [S]    /** Handler to do the network accesses on */private class MyHandler extends Handler {

同级目录下新增 GetNtpTIme.java 和 NtpMessage.java

frameworks/base/services/core/java/com/android/server/GetNtpTIme.java

package com.android.server;import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.ConnectException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.NoRouteToHostException;
import java.net.UnknownHostException;
import java.util.Date;import android.os.SystemClock;
import android.util.Log;public class GetNtpTIme {private static String TAG="NetworkTimeUpdateService.GetNtpTIme";public static boolean GetLocalNtpTime(String ntpSvrIP) {boolean res = false;int retry = 0;int port = 123;int timeout = 10000;// get the address and NTP address requestInetAddress ipv4Addr = null;try {if(ntpSvrIP==null){ipv4Addr = InetAddress.getByName("s1b.time.edu.cn");}else{ipv4Addr = InetAddress.getByName(ntpSvrIP);}Log.d(TAG, "ntpSvrIP : " + ntpSvrIP+", ipv4Addr : "+ipv4Addr);} catch (UnknownHostException e1) {e1.printStackTrace();}int serviceStatus = -1;DatagramSocket socket = null;long responseTime = -1;try {socket = new DatagramSocket();socket.setSoTimeout(timeout); // will force the// InterruptedIOExceptionfor (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {try {// Send NTP requestbyte[] data = new NtpMessage().toByteArray();DatagramPacket outgoing = new DatagramPacket(data,data.length, ipv4Addr, port);long sentTime = System.currentTimeMillis();socket.send(outgoing);// Get NTP ResponseDatagramPacket incoming = new DatagramPacket(data,data.length);socket.receive(incoming);responseTime = System.currentTimeMillis() - sentTime;double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;// 这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差// Validate NTP Response// IOException thrown if packet does not decode as expected.NtpMessage msg = new NtpMessage(incoming.getData());double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;Log.d(TAG,"poll: valid NTP request received the local clock offset is "+ localClockOffset + ", responseTime= "+ responseTime + "ms");Log.d(TAG, "poll: NTP message : " + msg.toString());SystemClock.setCurrentTimeMillis(msg.GetCurrentMS(msg.transmitTimestamp));serviceStatus = 1;res = true;} catch (Exception ex1) {// Ignore, no response received.Log.d(TAG, "InterruptedIOException: "+ ex1.toString());}}} catch (NoRouteToHostException e) {Log.d(TAG, "No route to host exception for address: "+ ipv4Addr);} catch (ConnectException e) {// Connection refused. Continue to retry.e.fillInStackTrace();Log.d(TAG, "Connection exception for address: " + ipv4Addr);} catch (IOException ex) {ex.fillInStackTrace();Log.d(TAG, "IOException while polling address: " + ipv4Addr);} finally {if (socket != null){socket.close();Log.d(TAG, "ntp address: " + ipv4Addr+" res:"+String.valueOf(res));return res;}}// Store response time if available//if (serviceStatus == 1) {Log.d(TAG, "responsetime==" + responseTime);}return res;}
}

frameworks/base/services/core/java/com/android/server/NtpMessage.java

package com.android.server;import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;public class NtpMessage {  /** *//** * This is a two-bit code warning of an impending leap second to be * inserted/deleted in the last minute of the current day. It''s values may * be as follows: *  * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2 * last minute has 59 seconds) 3 alarm condition (clock not synchronized) */  public byte leapIndicator = 0;  /** *//** * This value indicates the NTP/SNTP version number. The version number is 3 * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating * context must be inspected. */  public byte version = 3;  /** *//** * This value indicates the mode, with values defined as follows: *  * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message * 7 reserved for private use *  * In unicast and anycast modes, the client sets this field to 3 (client) in * the request and the server sets it to 4 (server) in the reply. In * multicast mode, the server sets this field to 5 (broadcast). */  public byte mode = 0;  /** *//** * This value indicates the stratum level of the local clock, with values * defined as follows: *  * Stratum Meaning ---------------------------------------------- 0 * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15 * secondary reference (via NTP or SNTP) 16-255 reserved */  public short stratum = 0;  /** *//** * This value indicates the maximum interval between successive messages, in * seconds to the nearest power of two. The values that can appear in this * field presently range from 4 (16 s) to 14 (16284 s); however, most * applications use only the sub-range 6 (64 s) to 10 (1024 s). */  public byte pollInterval = 0;  /** *//** * This value indicates the precision of the local clock, in seconds to the * nearest power of two. The values that normally appear in this field * range from -6 for mains-frequency clocks to -20 for microsecond clocks * found in some workstations. */  public byte precision = 0;  /** *//** * This value indicates the total roundtrip delay to the primary reference * source, in seconds. Note that this variable can take on both positive and * negative values, depending on the relative time and frequency offsets. * The values that normally appear in this field range from negative values * of a few milliseconds to positive values of several hundred milliseconds. */  public double rootDelay = 0;  /** *//** * This value indicates the nominal error relative to the primary reference * source, in seconds. The values that normally appear in this field range * from 0 to several hundred milliseconds. */  public double rootDispersion = 0;  /** *//** * This is a 4-byte array identifying the particular reference source. In * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or * stratum-1 (primary) servers, this is a four-character ASCII string, left * justified and zero padded to 32 bits. In NTP Version 3 secondary servers, * this is the 32-bit IPv4 address of the reference source. In NTP Version 4 * secondary servers, this is the low order 32 bits of the latest transmit * timestamp of the reference source. NTP primary (stratum 1) servers should * set this field to a code identifying the external reference source * according to the following list. If the external reference is one of * those listed, the associated code should be used. Codes for sources not * listed can be contrived as appropriate. *  * Code External Reference Source ---- ------------------------- LOCL * uncalibrated local clock used as a primary reference for a subnet without * external means of synchronization PPS atomic clock or other * pulse-per-second source individually calibrated to national standards * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany) * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US) * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA * radionavigation system GPS Global Positioning Service GOES Geostationary * Orbit Environment Satellite */  public byte[] referenceIdentifier = { 0, 0, 0, 0 };  /** *//** * This is the time at which the local clock was last set or corrected, in * seconds since 00:00 1-Jan-1900. */  public double referenceTimestamp = 0;  /** *//** * This is the time at which the request departed the client for the server, * in seconds since 00:00 1-Jan-1900. */  public double originateTimestamp = 0;  /** *//** * This is the time at which the request arrived at the server, in seconds * since 00:00 1-Jan-1900. */  public double receiveTimestamp = 0;  /** *//** * This is the time at which the reply departed the server for the client, * in seconds since 00:00 1-Jan-1900. */  public double transmitTimestamp = 0;  /** *//** * Constructs a new NtpMessage from an array of bytes. */  public NtpMessage(byte[] array) {  // See the packet format diagram in RFC 2030 for details  leapIndicator = (byte) ((array[0] >> 6) & 0x3);  version = (byte) ((array[0] >> 3) & 0x7);  mode = (byte) (array[0] & 0x7);  stratum = unsignedByteToShort(array[1]);  pollInterval = array[2];  precision = array[3];  rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);  rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);  referenceIdentifier[0] = array[12];  referenceIdentifier[1] = array[13];  referenceIdentifier[2] = array[14];  referenceIdentifier[3] = array[15];  referenceTimestamp = decodeTimestamp(array, 16);  originateTimestamp = decodeTimestamp(array, 24);  receiveTimestamp = decodeTimestamp(array, 32);  transmitTimestamp = decodeTimestamp(array, 40);  }  /** *//** * Constructs a new NtpMessage */  public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {  // ToDo: Validity checking  this.leapIndicator = leapIndicator;  this.version = version;  this.mode = mode;  this.stratum = stratum;  this.pollInterval = pollInterval;  this.precision = precision;  this.rootDelay = rootDelay;  this.rootDispersion = rootDispersion;  this.referenceIdentifier = referenceIdentifier;  this.referenceTimestamp = referenceTimestamp;  this.originateTimestamp = originateTimestamp;  this.receiveTimestamp = receiveTimestamp;  this.transmitTimestamp = transmitTimestamp;  }  /** *//** * Constructs a new NtpMessage in client -> server mode, and sets the * transmit timestamp to the current time. */  public NtpMessage() {  // Note that all the other member variables are already set with  // appropriate default values.  this.mode = 3;  this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;  }  /** *//** * This method constructs the data bytes of a raw NTP packet. */  public byte[] toByteArray() {  // All bytes are automatically set to 0  byte[] p = new byte[48];  p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);  p[1] = (byte) stratum;  p[2] = (byte) pollInterval;  p[3] = (byte) precision;  // root delay is a signed 16.16-bit FP, in Java an int is 32-bits  int l = (int) (rootDelay * 65536.0);  p[4] = (byte) ((l >> 24) & 0xFF);  p[5] = (byte) ((l >> 16) & 0xFF);  p[6] = (byte) ((l >> 8) & 0xFF);  p[7] = (byte) (l & 0xFF);  // root dispersion is an unsigned 16.16-bit FP, in Java there are no  // unsigned primitive types, so we use a long which is 64-bits  long ul = (long) (rootDispersion * 65536.0);  p[8] = (byte) ((ul >> 24) & 0xFF);  p[9] = (byte) ((ul >> 16) & 0xFF);  p[10] = (byte) ((ul >> 8) & 0xFF);  p[11] = (byte) (ul & 0xFF);  p[12] = referenceIdentifier[0];  p[13] = referenceIdentifier[1];  p[14] = referenceIdentifier[2];  p[15] = referenceIdentifier[3];  encodeTimestamp(p, 16, referenceTimestamp);  encodeTimestamp(p, 24, originateTimestamp);  encodeTimestamp(p, 32, receiveTimestamp);  encodeTimestamp(p, 40, transmitTimestamp);  return p;  }  /** *//** * Returns a string representation of a NtpMessage */  public String toString() {  String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));  return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);  }  /** *//** * Converts an unsigned byte to a short. By default, Java assumes that a * byte is signed. */  public static short unsignedByteToShort(byte b) {  if ((b & 0x80) == 0x80)  return (short) (128 + (b & 0x7f));  else  return (short) b;  }  /** *//** * Will read 8 bytes of a message beginning at <code>pointer</code> and * return it as a double, according to the NTP 64-bit timestamp format. */  public static double decodeTimestamp(byte[] array, int pointer) {  double r = 0.0;  for (int i = 0; i < 8; i++) {  r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);  }  return r;  }  /** *//** * Encodes a timestamp in the specified position in the message */  public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {  // Converts a double into a 64-bit fixed point  for (int i = 0; i < 8; i++) {  // 2^24, 2^16, 2^8, .. 2^-32  double base = Math.pow(2, (3 - i) * 8);  // Capture byte value  array[pointer + i] = (byte) (timestamp / base);  // Subtract captured value from remaining total  timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);  }  // From RFC 2030: It is advisable to fill the non-significant  // low order bits of the timestamp with a random, unbiased  // bitstring, both to avoid systematic roundoff errors and as  // a means of loop detection and replay detection.  array[7] = (byte) (Math.random() * 255.0);  }  /** *//** * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a * formatted date/time string. */  public static String timestampToString(double timestamp) {  if (timestamp == 0)  return "0";  // timestamp is relative to 1900, utc is used by Java and is relative  // to 1970  double utc = timestamp - (2208988800.0);  // milliseconds  long ms = (long) (utc * 1000.0);  // date/time  String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));  // fraction  double fraction = timestamp - ((long) timestamp);  String fractionSting = new DecimalFormat(".000000").format(fraction);  return date + fractionSting;  }  public long GetCurrentMS(double timestamp){if (timestamp == 0)  return 0;  // timestamp is relative to 1900, utc is used by Java and is relative  // to 1970  double utc = timestamp - (2208988800.0);  // milliseconds  long ms = (long) (utc * 1000.0);  return ms;}/** *//** * Returns a string representation of a reference identifier according to * the rules set out in RFC 2030. */  public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {  // From the RFC 2030:  // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)  // or stratum-1 (primary) servers, this is a four-character ASCII  // string, left justified and zero padded to 32 bits.  if (stratum == 0 || stratum == 1) {  return new String(ref);  }  // In NTP Version 3 secondary servers, this is the 32-bit IPv4  // address of the reference source.  else if (version == 3) {  return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);  }  // In NTP Version 4 secondary servers, this is the low order 32 bits  // of the latest transmit timestamp of the reference source.  else if (version == 4) {  return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));  }  return "";  }  
}  

这篇关于Android10.0(Q) 网络自动校时bug修改的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095473

相关文章

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Oracle修改端口号之后无法启动的解决方案

《Oracle修改端口号之后无法启动的解决方案》Oracle数据库更改端口后出现监听器无法启动的问题确实较为常见,但并非必然发生,这一问题通常源于​​配置错误或环境冲突​​,而非端口修改本身,以下是系... 目录一、问题根源分析​​​二、保姆级解决方案​​​​步骤1:修正监听器配置文件 (listener.

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动