python——concurrent.futures

2024-08-22 03:52
文章标签 python futures concurrent

本文主要是介绍python——concurrent.futures,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

concurrent.futures 是 Python 标准库中用于并行编程的高级模块,它提供了一种高级别的接口来管理线程和进程。通过这个模块,你可以轻松地利用多线程和多进程来并行执行任务,进而提高程序的执行效率。

1. concurrent.futures 概述

concurrent.futures 提供了两种执行器类型:

  • ThreadPoolExecutor:用于管理线程池。
  • ProcessPoolExecutor:用于管理进程池。

这两种执行器都实现了同样的接口,因此你可以使用相同的代码逻辑来管理线程和进程。

2. 核心 API

2.1 concurrent.futures.Executor

Executor 是一个抽象基类,它定义了任务提交和管理的核心接口。以下是 Executor 提供的主要方法:

  • submit(fn, *args, **kwargs)

    • 提交一个函数给执行器,函数会在独立的线程或进程中执行。返回一个 Future 对象。
    • 场景:当你需要执行一个后台任务并获取结果时使用。
    from concurrent.futures import ThreadPoolExecutordef square(n):return n * nwith ThreadPoolExecutor() as executor:future = executor.submit(square, 10)print(future.result())  # 输出: 100
    
  • map(func, *iterables, timeout=None, chunksize=1)

    • 将一个函数应用于一个或多个迭代器中的每个元素,并行地执行。类似于内置的 map() 函数,但它会并行执行。
    • 场景:当你有一组数据需要并行处理时使用。
    with ThreadPoolExecutor() as executor:results = executor.map(square, range(10))print(list(results))  # 输出: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    
  • shutdown(wait=True, cancel_futures=False)

    • 释放执行器资源。如果 wait=True,则会等待所有提交的任务完成;如果 cancel_futures=True,则会取消所有未开始的任务。
    • 场景:当你需要优雅地关闭执行器时使用。
    executor.shutdown(wait=True)
    
2.2 concurrent.futures.Future

Future 对象用于表示异步执行的任务结果。以下是 Future 提供的主要方法:

  • result(timeout=None)

    • 获取任务的结果,如果任务还未完成,则会等待。你可以设置一个超时时间。
    • 场景:当你需要获取异步任务的执行结果时使用。
    result = future.result(timeout=5)  # 等待最多5秒
    
  • exception(timeout=None)

    • 如果任务抛出了异常,则返回该异常对象,否则返回 None
    • 场景:当你想处理任务中的异常时使用。
    try:result = future.result()
    except Exception as e:print(f"Error occurred: {e}")
    
  • done()

    • 检查任务是否已完成。
    • 场景:当你想知道任务是否已经完成时使用。
    if future.done():print("Task is completed.")
    
  • add_done_callback(fn)

    • Future 对象添加一个回调函数,当任务完成时会自动调用此回调。
    • 场景:当你需要在任务完成后自动触发某些操作时使用。
    def on_done(fut):print(f"Task done with result: {fut.result()}")future.add_done_callback(on_done)
    

3. ThreadPoolExecutorProcessPoolExecutor

3.1 ThreadPoolExecutor
  • 线程池执行器,用于管理线程。适用于 I/O 密集型任务,如文件操作、网络请求等。

    with ThreadPoolExecutor(max_workers=5) as executor:future = executor.submit(square, 10)
    
    • 参数说明
      • max_workers:最大并发线程数。
3.2 ProcessPoolExecutor
  • 进程池执行器,用于管理进程。适用于 CPU 密集型任务,如计算密集型操作。

    from concurrent.futures import ProcessPoolExecutorwith ProcessPoolExecutor(max_workers=5) as executor:future = executor.submit(square, 10)
    
    • 参数说明
      • max_workers:最大并发进程数。

4. 使用场景

4.1 I/O 密集型任务

场景:当你有多个需要等待 I/O 操作(如文件读取、网络请求)的任务时,可以使用 ThreadPoolExecutor 来并行执行这些任务,从而减少总的等待时间。

import requestsdef fetch_url(url):response = requests.get(url)return response.status_codeurls = ['https://www.example.com', 'https://www.google.com', 'https://www.github.com']with ThreadPoolExecutor(max_workers=3) as executor:results = executor.map(fetch_url, urls)print(list(results))
4.2 CPU 密集型任务

场景:当你有多个需要大量计算的任务时,可以使用 ProcessPoolExecutor 来并行执行,从而充分利用多核 CPU 提高效率。

def fibonacci(n):if n <= 1:return nelse:return fibonacci(n-1) + fibonacci(n-2)with ProcessPoolExecutor(max_workers=3) as executor:results = executor.map(fibonacci, range(10, 20))print(list(results))

5. 总结

concurrent.futures 提供了一个方便的接口来管理多线程和多进程的并发执行。通过理解和使用这些 API,你可以更有效地编写并行程序,提高程序的执行效率。在选择使用 ThreadPoolExecutor 还是 ProcessPoolExecutor 时,应根据任务的性质(I/O 密集型或 CPU 密集型)来决定。

这篇关于python——concurrent.futures的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095160

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数