C++ 11---lambda表达式与包装器

2024-08-22 03:28
文章标签 c++ 表达式 lambda 包装

本文主要是介绍C++ 11---lambda表达式与包装器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

lambda表达式

lambda语法

capture-list捕获列表

        1.[var]:表示值传递方式捕捉变量var

        2.[=]:表示值传递方式捕获所有父作用域中的变量

        3. [&var]:表示引用传递捕捉变量var

        4.[&]:表示引用传递捕捉所有父作用域中的变量

        5.混合使用

        6.注意事项

lambda与仿函数(函数对象)

lambda优点

function包装器


lambda表达式

        Lambda表达式是一种在被调用的位置或作为参数传递给函数的位置定义匿名函数对象的简便方法。如下情景我们要对一些数进行排序,就可以调用sort函数,根据要求不同传递参数不同。如下代码。

struct SortDown
{bool operator()(const int& x,const int &y ){return x > y;}
};int main()
{vector<int> a = { 1,5,2,62,61,2,22,36,6,10 };//默认升序sort(a.begin(), a.end());for (int e : a)cout << e << " ";cout << endl;//降序sort(a.begin(), a.end(), SortDown());for (int e : a)cout << e << " ";cout << endl;return 0;
}

        运行结果如下图

        上述代码我们也可以实现对不同要求的排序,但每次每次实现要求时要单独写一个类,相较而言是比较复杂的,就可以用lambda简化如下代码。

int main()
{vector<int> a = { 1,5,2,62,61,2,22,36,6,10 };//默认升序sort(a.begin(), a.end(), [](const int& x, const int& y)->bool {return x < y; });for (int e : a)cout << e << " ";cout << endl;//降序sort(a.begin(), a.end(), [](const int& x, const int& y)->bool{return x > y; });for (int e : a)cout << e << " ";cout << endl;return 0;
}

        运行结果如下。

        相较于使用类,使用lambda表达式更加的简洁些,可以直接看出sort的排序不用向上查找类实现。

lambda语法

        Lambda表达式可以看为是匿名函数对象,语法如下。

[capture-list] (parameters) mutable -> return-type { statement }

        首先 return-type是返回值类型, statement是函数体,parameters是函数参数,这三个与普通函数基本一样,按照普通函数用法去写即可。

        其中有些特殊规定如下。

        (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以 连同()一起省略。

        ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回 值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推 导。

        以上两处在特定的情况下都可以省略,所以可以说lambda表达式基本结构如下。

[]   { }

        捕获列表加上函数体。

capture-list捕获列表

        1.[var]:表示值传递方式捕捉变量var

        按照值传递方式捕捉变量var,相当于拷贝一份var变量,在函数体内是不支持修改的,具有const属性,发生修改操作就会报错。如下图。

        如果想要var变量可以修改就要加上mutable关键字。如下图就可以修改了。

        接下来通过调试观察a,b值变化。

        由于lambda表达式类型是匿名的,我们就可以用auto接受,让编译器自己推导。如何使用这个匿名函数对象,我们就可以直接调用()就可以了,把他视为一个对象,在对象中将()进行了重载。

        如下代码。

int main()
{int a = 0, b = 2;auto fun=[a, b]()mutable{a = 1;b = 1;};fun();return 0;
}

        

        单纯只写函数名是不可以修改外部变量的!!

       2.[=]:表示值传递方式捕获所有父作用域中的变量

        如果只在捕获列表写一个=,说明所有要使用的外部变量都按照值传递的方式,在函数体内部修改不影响外面。如下代码。

        

int main()
{int a = 0, b = 2;cout << a <<" " << b << endl;auto fun=[=]()mutable{a = 1;b = 1;};fun();cout << a << " " << b << endl;return 0;
}

        运行结果如下,在函数内修改不影响外面。

        如果我们想要影响函数外面就可以传引用的方式。

       3. [&var]:表示引用传递捕捉变量var

        如上代码修改后结果如下。

int main()
{int a = 0, b = 2;cout << a <<" " << b << endl;auto fun=[&a,&b]()mutable{a = 1;b = 1;};fun();cout << a << " " << b << endl;return 0;
}

        这里的&a表示按引用传递为不是取地址,是对&运算符的再次利用赋予新的含义。

        4.[&]:表示引用传递捕捉所有父作用域中的变量

        捕获列表如果只写一个&,表示所有使用的变量都以引用的方式传递。

int main()
{int a = 0, b = 2;cout << a <<" " << b << endl;auto fun=[&]()mutable{a = 1;b = 1;};fun();cout << a << " " << b << endl;return 0;
}

        引用之后修改的就与外层变量是同一个。

        5.混合使用

        除了上述使用外,我们可能会有多个变量要引用,一个要值传递就可以采用如下方式。

int main()
{int a = 0, b = 2;int c = 3;cout << a <<" " << b <<" " << c << endl;auto fun=[&,c]()mutable{a = 1;b = 1;c = 1;};fun();cout << a << " " << b << " " << c << endl;return 0;
}

        c按照值传递,a,b按照引用传递。这样就可以避免写多个引用或者值传递。

        同理也可以按照如下使用,=加引用传递

int main()
{int a = 0, b = 2;int c = 3;cout << a <<" " << b <<" " << c << endl;auto fun=[=,&c]()mutable{a = 1;b = 1;c = 1;};fun();cout << a << " " << b << " " << c << endl;return 0;
}

        6.注意事项

        1.不可以重复捕获一个变量。

        c表示值传递,=又把变量c值传递,编译器就会报错。但可以将c改为&c,按引用传递,那么就不会再对c进行引用传递了。

        2.lambda表达式只可以捕获当前父作用域变量。

        父作用域指包含lambda函数的语句块。通常被{}包围。

        3.lambda表达式内可以使用全局变量。

        如下代码

int c = 3;
void test()
{int a = 0, b = 2;cout << a << " " << b << " " << c << endl;auto fun = [=]()mutable {a = 1;b = 1;c = 1;};fun();cout << a << " " << b << " " << c << endl;
}int main()
{test();return 0;
}

        运行结果如下。

lambda与仿函数(函数对象)

        lambda表达式的结果就是匿名函数对象,我们无法直接的得到他的类型,只能通过编译器推导,即使用auto。

        运行如下代码。我们可以得到如下结果。

struct SortDown
{bool operator()(const int& x,const int &y ){return x > y;}
};void test()
{vector<int> a = { 1,5,2,62,61,2,22,36,6,10 };auto fun = [](const int& x, const int& y) {return x > y;};//lambda表达式sort(a.begin(), a.end(), fun);for (int e : a)cout << e << " ";cout << endl;//仿函数sort(a.begin(), a.end(), SortDown());for (int e : a)cout << e << " ";cout << endl;
}
int main()
{test();return 0;
}

        我们可以通过仿函数得到与lambda一样的效果。

        当然也可以让他们两个更像一些。此时都是匿名对象。

void test()
{vector<int> a = { 1,5,2,62,61,2,22,36,6,10 };//lambda表达式sort(a.begin(), a.end(), [](const int& x, const int& y) {return x > y;});for (int e : a)cout << e << " ";cout << endl;//仿函数sort(a.begin(), a.end(), SortDown());for (int e : a)cout << e << " ";cout << endl;
}

        我们可以看些底层汇编加深他们之间的关系。运行如下代码

struct SortDown
{bool operator()(const int& x,const int &y ){return x > y;}
};int main()
{auto fun = [](const int& x, const int& y) {return x > y;};//lambda表达式fun(1, 2);SortDown sd;//仿函数sd(1, 2);return 0;
}

        因此可以说lambda表达式就是经过特殊处理的函数对象,对象名在运行时由编译器决定,可以使用auto推出,函数使用与仿函数一样,都是调用重载的()函数。

lambda优点

        相较于类而言,lambda表达式更加的简洁,明了。可以在可以在传递参数的位置让程序员明白意图,不必向上寻找类,总而言之面对较简单的逻辑时,就可以考虑用lambda表达式替换类对象简化代码。

包装器

为什么要有包装器(适配器)

        在使用包装器之前,我们要包含头文件<functional>。

        通过上述lambda表达式的学习,我们知道一个名字加()可以形成具有函数作用的语句有三种。如下代码

        1.函数名,这也是我们最早学的,用的最多的。

int cmp(const int& x, const int& y)
{return x < y;
}//调用语句
cout<<cmp(1, 2);

        2.类重载()

struct up
{bool operator()(const int& x, const int& y){return x < y;}
};
up t;
//调用语句
cout<<t(1, 2);

        3.lambda表达式

auto fun = [](const int& x, const int& y) {return x < y;};//调用语句
cout<<fun(1, 2);

        假如把上述3种的调用写在一起如下。

    //调用语句
    cout<<cmp(1, 2);
    cout<<t(1, 2);
    cout<<fun(1, 2);

        光看名称很难做出判断,这个名字究竟是类名?函数名?此时我们在设计深一层的接口时就十分难办,如排序接口,第三个参数写出什么?指针么?传对象不可以。对象么?指针又不可以。在标准库中sort第三个参数就是开放的,可以传类或者指针。如下图。

        于是就引入了适配器的概念,我们不关心你是通过函数还是对象实现的,只关注你要什么参数,返回值是什么,统一模板。如下代码。

int main()
{up t;function<bool(int, int)> f1 = cmp;function<bool(int, int)> f2 = t;function<bool(int, int)> f3 = fun;//调用语句cout<<f1(1, 2)<<endl;cout<<f2(1, 2)<<endl;cout<<f3(1, 2)<<endl;return 0;
}

        这里的类型不要求完全相同,可以走隐式类型转化,当然完全相同最好。

        经过上述适配器后,我们就不需要关注是怎么是实现的,只关注如何使用,运行结果如下。

function

        function实际上是一个模板类,可以根据提供的参数,实例化不同的类。function - C++ Reference (cplusplus.com)

        底层构造函数根据类型不同进行不同的初始化,这里就不过多赘述了,感兴趣可以点击上面网站查询。

        他的语法如下

function<返回值类型(参数列表)> 变量名 = 函数名/类名/lambda表达式;

        通过function也可以解决类模板效率底下的问题。如下代码。

template<class F, class T>
T fun(F f, T x)
{static int count = 0;cout << "count:" << ++count << endl;cout << "count:" << &count << endl;return f(x);
}
double f(double i)
{return i / 2;
}
struct Functor
{double operator()(double d){return d / 3;}
};
int main()
{// 函数名cout << fun(f, 11.11) << endl;// 函数对象cout << fun(Functor(), 11.11) << endl;// lamber表达式cout << fun([](double d)->double { return d / 4; }, 11.11) << endl;return 0;
}

        程序在运行时应为参数不同,会实例化出三份模板,但如果将代码改为如下就可以提高效率

template<class F, class T>
T fun(F f, T x)
{static int count = 0;cout << "count:" << ++count << endl;cout << "count:" << &count << endl;return f(x);
}
double f(double i)
{return i / 2;
}
struct Functor
{double operator()(double d){return d / 3;}
};
int main()
{// 函数名(函数指针)std::function<double(double)> func1 = f;cout << fun(func1, 11.11) << endl;// 函数对象std::function<double(double)> func2 = Functor();cout << fun(func2, 11.11) << endl;return 0;
}

        fun1与fun2的类型一样,最终只会实例化一份代码,提高效率。

bind

        std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可 调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而 言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个参数的新函数。同时,使用std::bind函数还可以实现参数顺 序调整等操作。

        模板如下,bind - C++ Reference (cplusplus.com)

       如果为函数语法如下。返回值可以用auto接收,也可以用function接受。

bind(函数名,参数列表)

参数列表中_1 表示调用函数时传递的第一个参数,_2表示调用函数时传递的第二个参数等,他们存在类域placeholders中。

其中参数列表可以掺入常量,表示那个参数绑定死某个值,具体用法看下述代码。

        如果为类对象语法如下。返回值可以用auto接收,也可以用function接受。

bind(函数名,类对象,参数列表)

参数列表中_1 表示调用函数时传递的第一个参数,_2表示调用函数时传递的第二个参数等,他们存在类域placeholders中。

其中参数列表可以掺入常量,表示那个参数绑定死某个值,具体用法看下述代码。

        运行如下代码

int Add(int a, int b)
{return a + b;
}
class Sub
{
public:int sub(int a, int b){return a - b;}
};
int main()
{//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定std::function<int(int, int)> func1 = std::bind(Add, placeholders::_1,placeholders::_2);//Add前两个参数绑死1 2auto  func2 = std::bind(Add, 1, 2);cout << func1(1, 2) << endl;cout << func2() << endl;Sub s;// 绑定成员函数std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,placeholders::_1, placeholders::_2);// 参数调换顺序std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,placeholders::_2, placeholders::_1);cout << func3(1, 2) << endl;cout << func4(1, 2) << endl;return 0;
}

        结果如下图。

        func3的顺序没有改变如下图。

        func4的顺序有改变如下图。

        也可如下写。结果为4.

//Add第一个个参数绑死2
auto  func3 = std::bind(Add,2, placeholders::_1);
cout << func3(2) << endl;

           包装器进一步封装了代码,提供了简洁的使用方式。

这篇关于C++ 11---lambda表达式与包装器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095101

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的