【转】Memory中的Channel/Rank/Bank解析

2024-08-22 01:58
文章标签 channel 解析 memory rank bank

本文主要是介绍【转】Memory中的Channel/Rank/Bank解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Memory中的Channel/Rank/Bank解析

最近在看网卡底层驱动的一些资料,被内存bankrankchannel这些关于memory的名词搞得绕来绕去,网上查了一些资料,说得也不全面。在这里让我们一步一步来拆解memory的神秘面纱,从架构到读写逐步解开这块秘密。

发挥性memory分两种,SRAMDRAM

RAM(Random Access Memory)随机存取内存,之所以叫做“随机存取”,是因为相对于早期现行存储媒介(磁带?很久以前的)而言,因为磁带的存取是线性的(还记得快进/倒带 那个滋溜爽),存取时间由目前磁带位置和目的位置的距离而定(类似数据结构中的线性表)。需要转动刺头到应有的位置,因此距离越长,转的就越久了,读写时间也越久。而伟大的RAM没有这种限制,存取时间为固定值(类似数组这种下表式访问,下标就是地址),不会因为存储资料在memory中的位置而影响读取时间。

RAM大致可以分为两种:SRAMDRAM,这两者基本原理上有相同的地方,都是将电荷存储到记忆体内部,由此针对不同的电荷存储0 or 1. SRAM(Static Random Access Memory)静态随机存储memory和DRAM(Dynamic Random Access Memory)有几点不同:SRAM的结构比较复杂,单位面积的容量少,存取速度很快;DRAM则结构简单,单位面积存储的容量比较多,存取时间相对SRAM慢,同时DRAM因为构造比较简单,存储的电荷惠随着时间逐渐消失,因此需要定时再充电(Refresh),以保持电容存储的资料。

 

由图中的SRAMDRAM构造可以知道,SRAM采用正反三极管+电容(flip-flop)构造存储器,DRAM则是采用电容式存储(md,这两图看着好熟悉,就是看不懂早忘了,欲哭无泪)。因为SRAMDRAM的种种特性上的不同,SRAM比较适合作为暂存器,配合CPU快速存取使用。DRAM则适合作为主要的memory记忆体而使用。

易失性存储器与非易失性存储器
易失性存储器/记忆体(Volatile Memory)和非易失性存储器/记忆体(Non-Volatile Memory)之间的差异在于,断电之后是否还可以保存内部存储的资料。挥发性记忆体的资料将会随着失去电力的供应而消失,而非挥发性记忆体依然可以保存有内部的资料。

内存子系统

DRAM由于构造简单,高密度,作为电脑内部的主要记忆体非常适合。但由于主存通常放在CPU之外,从工厂出来的颗粒需要封装和组合之后才可以和CPU相连,因此从CPUDRAM颗粒之间依次按层级由大到小分为channel > DIMM > rank > chip > bank > row/column。(和lz之前想的差不多,就跟先到哪条街道,哪个小区单元,哪个栋楼,几层几单元的地址格局一样)。下面,让我们来一一说明这些部分:

内存的结构(从上往下,由大到小)

内存从channel到chip的对应关系。这里特别要注意,rank和内存条的面没有必然关系,虽然图中这么画了,但是不要误导大家,就是示意一下,下面会有详细介绍。

chip 再往下拆分为 bank

bank 再往下拆分就是一个个的存储单位,横排为row,纵列为column,每排column的下方都有一个row buffer,用来暂存刚刚读取出来的某个row排的资料。(是不是很简单,是不是很像你家小区的格局?Yeah!so easy ~)

Bank 再往下拆分

单个DRAM颗粒内部的功能区块图(图片来自Micron)

 

channelDIMM

从内存控制器出来之后,最先到达的是channel,每个channel都需要配有一组内存控制器,2个channel两个……以此类推。而每个channel中能够有很多组DIMM(Dual In-line Memory Module)DIMM就是目前能够在消费市场上买到的大家平时能看到的内存模组。因为n多年前的主板必须购买内存颗粒(chip)自己插在主板上(想想知道为啥那时候大师都厉害了吧,这组成原理在实践中就得到了锻炼),然后发展出SIMM (Single In-line Memory Module),将多组内存颗粒(chip)焊在一块电路板上,成为内存模组,再将次电路板插在主板上。接着为了增加吞吐量,将一条内存模组的位宽从SIMM的32bit升级到DIMM的64bit,这个设计沿用至今。

从内存颗粒过度到SIMM的时代,坊间曾出现替使用者将内存颗粒焊接到SIMM电路板上的私活,因为当时的内存条非常贵,所以稍微花点小钱就可以把内存颗粒换到新的电脑上。

rankchip

rank指的是连接到同一个cs(Chip Select,片选)的所有内存颗粒chips,内存控制器能够对同一个rank的所有chips同时进行读写操作,而在同一个rankchip也分享同样的控制信号。以目前的电脑来说,因为一组channel的位宽是64bit,所以能够同时读写8byte的资料,如果是具有ECC功能的内存控制器和ECC内存模组,那么一组channel的位宽就是72bit。

rank

rank1和rank2共享同一组addr/command信号线,利用cs片选线选择欲读取或是写入的那一组,之后将存储内容经由MUX多路器送出。

很多人有错误的理解,常以chip的数量或是以内存模组的单/双面对rank进行判断,但实际上应该以内存控制器和内存颗粒的规格进行判断。目前家用PC的内存控制器通道绝大部分是64bit宽,内存颗粒的位宽是8bit。因此8颗颗粒就可以满足内存控制器的需求,也就是一组rank。但偶尔也有以16bit位宽的内存颗粒制成的内存模组,此时4个颗粒chip就是一组rank

这在采用Intel H61/H81 芯片组 和 传统单channel的主板时需要特别注意,因为Intel限制H64/H81每个channel仅能支持2组rank,而不是4组rank,部分主板每个channel又做了2组内存模组插槽,造成部分使用者同组channel放入2条内存模组(内存条)时能够识别全部的内存容量(对于双面单rank的内存模组是这样),然而部分使用者则仅能识别一半的容量(双面双rank的内存模组)。

bankrowcolumn

bank再往下分就是实际存储单位元的电路,一般来说横向选择排数的线路称为row(row enable, row select, word line),纵向负责传送信号的线路称为column(bitline),每组bank的下方还会有个row buffer(sense amplifer),负责将读出的row内容暂存,等待column位址送到后输出正确的位元,以及判断存储的内容是0还是1.

一个bank的读取操作。

 

一个bank的写入操作。

 

内存的读写方式

上图标明了内存的读写方式,读取时首先内存控制器将1组位址现传到内存上,控制器跟着传送控制信号;如果是多rank的情况,CS也会送到对应信号选择的目标rank上。接着由于每个rank是由多个chip组成,每个chip仅负责部分的资料读取,chip接收到位址信号后,将位址放入内部的row/column解码器找出对应的bank位址(每家厂商每款产品内部的bank组合可能不同,因此相应地也会略有不同),接着开启row线,同一排row的内部内容就会流到row buffer内部,row buffer判断信号为0或是1之后就输出存储内容。

写入时除了位址资料以外,还会传送欲写入的内容至芯片内部的input buffer,同样的也是按照row/column解码器找出对应位址之后写入。

内存控制器和DIMM之间的线路关系

记忆控制器和DIMM之间的线路关系

越多越好,加速读写能力

家用电脑的内存控制器已经进入双通道内存控制器多年,加速原理为增加位宽,达到同时读写更多资料的能力。

另一种增加频宽的方法就是减少延迟,利用多个chip或是bank达成。一般的内存读取延迟为 命令下达 + 内存读取延迟 + 输出内容,如果命令下达延迟为2ns,内存读取延迟为10ns,输出内容延迟为2ns,那么读取两笔资料的延迟就是 (2+10+2) × 2 = 28ns。

如果能够将资料拆分到2颗内存颗粒上,那么这两笔读取延迟将降低至2+2+10+2=16ns,因为不需要等到前面一笔资料的读取完成才发出下一笔的读取命令,在第一笔资料进入内存读取时就可发出。这种概念也可应用到目前的SSD上,较多的ce分装的快速记忆芯片,通常都比较少ce封装的芯片来得快。

由时序图可以知道,下凡此种尽量拆分内存空间的作法,可以大幅减少延迟。

 

这篇关于【转】Memory中的Channel/Rank/Bank解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094915

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?