TensorFlow random_crop和multinomial等方法学习

2024-08-21 20:08

本文主要是介绍TensorFlow random_crop和multinomial等方法学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习斯坦福大学TensorFlow教程第二节课(https://www.youtube.com/watch?v=9kC836XhICU&list=PLQ0sVbIj3URf94DQtGPJV629ctn2c1zN-&index=2)的时候,遇到几个随机数生成的方法,这里学习一下。

第一个是tf.random_normal(),该方法就是用正态分布产生随机数,默认是标准正态分布。

第二个是tf.truncated_normal(),该方法类似上一个,就是多了店截断操作,具体说就是产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。

第三个是tf.random_uniform(),该方法则是用均匀分布产生随机值,默认浮点数范围[0, 1),整数的话maxval要指定。均匀分布也就是(a, b)范围内,概率密度f(x) = 1 / (b - a),其他地方则为0。

第四个是tf.random_suffle(),每一次都把其中的一些行换位置或者不换,代码如下:

import tensorflow as tfa = tf.get_variable('a', [3, 2], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print(sess.run(a))print(sess.run(tf.random_shuffle(a)))

结果如下:

[[ 2.0261083  -0.34673768][ 0.09152898  1.1487025 ][ 1.2850556   0.97470516]]
[[ 2.0261083  -0.34673768][ 1.2850556   0.97470516][ 0.09152898  1.1487025 ]]

这里所有行都没变,再执行一次:

[[ 0.5839885  -0.11081421][-0.4712714   0.40724093][-0.12657043 -0.03069498]]
[[-0.12657043 -0.03069498][ 0.5839885  -0.11081421][-0.4712714   0.40724093]]

发现行的位置变了,该函数的操作效果就是这样。我在写代码的时候,不小心把tf.global_variables_initializer()写在了变量a前面,这个时候程序报错。虽然我觉得还没用sess.run(),所以tf.global_variables_initializer()位置应该可以放前面的,不过确实不行。

第五个是tf.random_crop(),参考https://blog.csdn.net/sinat_21585785/article/details/74144800。例如我的原图为:

裁剪为:

再运行一次,裁剪为:

代码如下:

import tensorflow as tf
import matplotlib.image as img
import matplotlib.pyplot as pltsess = tf.InteractiveSession()
image = img.imread('MarshOrchid.jpg')reshaped_image = tf.cast(image, tf.float32)
size = tf.cast(tf.shape(reshaped_image).eval(), tf.int32)height = sess.run(size[0] // 2)
width = sess.run(size[1] // 2)distored_image = tf.random_crop(reshaped_image, [height, width, 3])print(tf.shape(reshaped_image).eval())
print(tf.shape(distored_image).eval())fig = plt.figure()
fig1 = plt.figure()ax = fig.add_subplot(111)
ax1 = fig1.add_subplot(111)ax.imshow(sess.run(tf.cast(reshaped_image, tf.uint8)))
ax1.imshow(sess.run(tf.cast(distored_image, tf.uint8)))plt.show()

这里用matplotlib.image的imread()方法读入图片,用tf.cast()方法将其数值转换为float32类型,然后打印其shape,我这里为[5528 3685    3]。接着用整除得到裁剪数值,选择的为裁剪一半。接着是figure实例,add_subplot()操作添加子图,一个的话里面是“111”,两个的话则分别add_subplot(221),add_subplot(222),add_subplot(223),add_subplot(224)。imshow()方法第一个参数X存储图像,最后用plt.show()显示。

第六个tf.multinomial(),multinomial也就是多项式。这个方法可以从多项式分布中抽取样本,就是根据概率分布的大小,返回对应维度的下标序号。测试代码如下:

import numpy as np
import tensorflow as tfb = tf.constant(np.random.normal(size = (3, 4)))with tf.Session() as sess:print(sess.run(b))print(sess.run(tf.multinomial(b, 5)))

结果为:

[[ 2.04100276 -1.12229608 -0.78679458 -0.16623389][ 0.73953609 -0.06907413  0.38520517 -0.27433991][ 0.0813765  -0.16081293 -2.02023628  0.23459176]]
[[0 0 0 0 2][3 0 2 1 2][0 1 0 3 3]]

b变量原来为三行四列的,经过该操作后成了三行五列的。multinomial()方法第一个参数是一个2-D Tensor,称为logits,其shape为[batch_size, num_classes],所以本例中batch_size就是3,num_classes就是4。第二个参数是num_samples,是一个0-D Tensor,也就是常量,表示从每一行切片中获取的独立样本的个数。这里我用的随机数作为初始变量,其实如果以固定的值来算,其multinomial()结果也会是变化的。

第七个是tf.random_gamma()。该方法根据gamma分布个数,每个分布给出shape参数对应个数数据。

在本部分的学习中,遇到的一些其他不清楚的问题一并记录如下。

1. numpy的eye()方法可以得到一个单位矩阵,如

import numpy as npe = np.eye(3)

得到的结果如下:

[[1. 0. 0.][0. 1. 0.][0. 0. 1.]]

这也就是3行3列的方阵,单位矩阵一定是方阵。不过该方法实际上可以不产生方阵,如将其改为np.eye(3, 4),那么就得到3行4列的如下输出:

[[1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.]]

其类型是numpy.ndarray,可以用e.shape属性获取其shape信息。

2. TensorFlow的变量也是可以用shape直接获取其shape属性的,如:

import tensorflow as tfa = tf.get_variable('a', [2, 3], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print('a:\n', sess.run(a))print(type(a))print(a.shape)

这里面变量a是2行3列的矩阵,其类型是tensorflow.python.ops.variables.Variable,虽然不是numpy.ndarray,但是用a.shape是没问题的。接着,TensorFlow有tf.shape(x)和x.get_shape()两个方法,和以上有什么不同呢?加上print(tf.shape(a)),得到的是:

Tensor("Shape:0", shape=(2,), dtype=int32)

所以对于tf.shape(x),x可以是tensor,也可以不是,其返回值是一个tensor。shape=(2,)也就是个二维矩阵了,接着 print(sess.run(tf.shape(a)))确定运行后其二维各自大小,得到:

[2 3]

也就是该二维矩阵第一个维度(行)是2,第二个维度(列)是3。

这篇关于TensorFlow random_crop和multinomial等方法学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094154

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)