【深度学习】Focal Loss 损失函数

2024-08-21 19:12

本文主要是介绍【深度学习】Focal Loss 损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Focal Loss 损失函数

1. Focal Loss 介绍

Focal Loss 是一种专门设计用于处理类别不平衡问题的损失函数,特别是在目标检测任务中表现出色。它最早由 Facebook AI Research (FAIR) 提出的,在物体检测中,如 RetinaNet,解决了正负样本严重不平衡的问题。
论文链接:Focal Loss for Dense Object Detection

2. 背景

在许多实际应用中,如目标检测,类别不平衡是一个常见问题。例如,在一个图像中,背景(负样本)通常占据大多数,而目标物体(正样本)很少。传统的交叉熵损失(Cross-Entropy Loss)可能会导致模型过度关注负样本,从而忽视正样本,特别是难以检测的正样本。Focal Loss 通过将注意力集中在难以分类的样本上,来解决这个问题。

3. Focal Loss 定义

Focal Loss 的公式如下:
F L ( p t ) = − α t ( 1 − p t ) γ l o g ( p t ) FL(p_t) = -\alpha _t(1-p_t)^\gamma log(p_t) FL(pt)=αt(1pt)γlog(pt)

其中

  • p t p_t pt 是模型对目标类的预测概率
  • α t \alpha _t αt平衡因子,用于调整正负样本之间的影响。
  • γ \gamma γ焦点因子,用于调整难易样本的权重。

(1) 交叉熵损失

Focal Loss 基于二分类交叉熵损失(Binary Cross-Entropy Loss)。传统的交叉熵损失可以表示为:
B C E ( p t ) = − l o g ( p t ) BCE(p_t) = -log(p_t) BCE(pt)=log(pt)
其中, p t p_t pt 是模型对正确类别的预测概率。

(2) 平衡因子 α t \alpha_t αt

平衡正负样本: α t \alpha_t αt 用于平衡正负样本的影响,防止负样本过多对损失的贡献:

  • 对于正样本, α t = α \alpha_t = \alpha αt=α
  • 对于负样本, α t = 1 − α \alpha_t = 1-\alpha αt=1α

通常, α \alpha α 的值在 [0,1] 之间,表示正负样本的权重比例。对于目标检测任务, α \alpha α可以设为正样本和负样本的比例。

(3) 焦点因子 γ \gamma γ

焦点因子 γ \gamma γ:通过引入焦点因子 γ \gamma γFocal Loss 调整了模型对易分类样本和难分类样本的关注程度。公式中的 ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ部分是关键:

  • 当预测概率 p t p_t pt 接近 1(即样本容易分类), ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ会非常小,减少了损失的贡献。
  • 当预测概率 p t p_t pt 接近 0(即样本难以分类), ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ 会变大,增加了损失的权重,从而让模型更加关注这些难分类的样本。

焦点因子 γ \gamma γ 通常设为2,但可以根据具体问题调整。更大的 γ \gamma γ 会使得模型更加专注于难分类样本。

4. 使用场景

  • 目标检测:Focal Loss 最初用于目标检测任务,如 RetinaNet,因为目标检测中的正负样本严重不平衡。通过聚焦于难分类的目标,Focal Loss 提高了模型对目标的检测能力。
  • 其他类别不平衡任务:Focal Loss 也可以应用于其他类别不平衡的分类任务,如文本分类或医学图像分析。

5. Focal Loss代码实现(Pytorch)

# -*- coding: utf-8 -*-
# @time: 2024/8/21 16:54import torch
import torch.nn as nn# Focal Loss 的 PyTorch 示例实现
class FocalLoss(nn.Module):def __init__(self, alpha=0.25, gamma=2, reduction='mean'):super(FocalLoss, self).__init__()self.alpha = alphaself.gamma = gammaself.reduction = reductiondef forward(self, inputs, targets):# 计算 logits 的 sigmoid 概率p = torch.sigmoid(inputs)# 计算交叉熵损失bce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction='none')# 计算 Focal Lossalpha = self.alpha * targets + (1 - self.alpha) * (1 - targets)focal_loss = alpha * ((1 - p) ** self.gamma) * bce_loss# 根据 reduction 参数进行损失归约if self.reduction == 'mean':return focal_loss.mean()elif self.reduction == 'sum':return focal_loss.sum()else:return focal_loss# 使用示例
criterion = FocalLoss(alpha=0.25, gamma=2)
inputs = torch.randn(4, requires_grad=True)
targets = torch.empty(4).random_(2)
loss = criterion(inputs, targets)print(inputs)
print(targets)
print(loss)

输出结果

tensor([-0.7896, -0.1952, -0.7318, -2.2900], requires_grad=True)
tensor([0., 0., 0., 1.])
tensor(0.2236, grad_fn=<MeanBackward0>)

6. 总结

Focal Loss 是一种处理类别不平衡问题的有效方法,通过引入焦点因子和调整样本权重,使得模型对难以分类的样本更加关注,从而提高分类性能。它特别适用于目标检测和其他类别不平衡的任务。

这篇关于【深度学习】Focal Loss 损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094040

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(