如何使用Pytest进行自动化测试

2024-08-21 16:52

本文主要是介绍如何使用Pytest进行自动化测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么需要自动化测试

自动化测试有很多优点,但这里有3个主要的点

  1.     可重用性:不需要总是编写新的脚本,除非必要,即使是新的操作系统版本也不需要编写脚本。
  2.     可靠性:人容易出错,机器不太可能。当运行不能跳过的重复步骤/测试时,速度会更快。
  3.     全天运行:您可以在任何时间或远程启动测试。夜间运行正在测试你的软件,即使是在你睡着的时候。

成熟的、功能齐全的Python测试工具——pytest

目前有多种可用的测试框架和工具。这些框架的风格也各不相同,比如数据驱动、关键字驱动、混合、BDD等等。您可以选择最适合您的要求。

Python和pytest在这场竞争中占据了巨大的份额。Python及其相关工具之所以被大量使用,可能是因为与其他语言相比,没有或很少编程经验的人更能负担得起它们。

pytest框架使得编写小型测试变得很容易,但是可以扩展到支持应用程序和库的复杂功能测试。

Pytest的一些主要特性:

  •     自动发现测试模块和功能
  •     有效的CLI来更好地控制您想要运行或跳过的内容
  •     大型第三方插件生态系统
  •     固定装置-不同的类型,不同的范围
  •     与传统的单元测试框架一起工作
  •     如何使用Pytest进行自动化测试
     

在这里插入图片描述

自动和可配置的测试发现

在默认情况下,pytest期望在名称以test_开头或以_test.py结尾的python模块中找到测试。在默认情况下,它期望测试函数名以test_ 开头。但是,可以通过在pytest的一个配置文件中添加您自己的配置来修改这个测试发现协议。


# content of pytest.ini# Example 1: have pytest look for "check" instead of "test"# can also be defined in tox.ini or setup.cfg file, although the section# name in setup.cfg files should be "tool:pytest"[pytest]python_files = check_*.pypython_classes = Checkpython_functions = *_check

 让我们看一下非常基本的测试函数。

 

class CheckClass(object):def one_check(self):x = "this"assert 'h' in xdef two_check(self):x = "hello"assert hasattr(x, 'check')

你注意到什么了吗?没有花哨的assertEqual或assertDictEqual等,只是简单明了的断言。对于比较两个对象的简单操作,不需要导入这些断言函数。assert是python已经提供的功能,因此无需重新发明。

固定装置会起作用的查看测试功能,测试钱包软件的基本操作,比如,


// test_wallet.pyfrom wallet import Walletdef test_default_initial_amount():wallet = Wallet()assert wallet.balance == 0wallet.close()def test_setting_initial_amount():wallet = Wallet(initial_amount=100)assert wallet.balance == 100wallet.close()def test_wallet_add_cash():wallet = Wallet(initial_amount=10)wallet.add_cash(amount=90)assert wallet.balance == 100wallet.close()def test_wallet_spend_cash():wallet = Wallet(initial_amount=20)wallet.spend_cash(amount=10)assert wallet.balance == 10wallet.close()

嗯,有意思!你注意到了吗,很多样板文件。另一件值得注意的事情是,测试除了测试功能之外还做了一些其他的事情,例如实例化钱包并关闭它——Wallet .close()

现在让我们看看如何使用pytest fixture去除样板

 

import pytestfrom _pytest.fixtures import SubRequestfrom wallet import Wallet#==================== fixtures@pytest.fixturedef wallet(request: SubRequest):param = getattr(request, ‘param’, None)if param:prepared_wallet = Wallet(initial_amount=param[0])else:prepared_wallet = Wallet()yield prepared_walletprepared_wallet.close()#==================== testsdef test_default_initial_amount(wallet):assert wallet.balance == 0@pytest.mark.parametrize(‘wallet’, [(100,)], indirect=True)def test_setting_initial_amount(wallet):assert wallet.balance == 100@pytest.mark.parametrize(‘wallet’, [(10,)], indirect=True)def test_wallet_add_cash(wallet):wallet.add_cash(amount=90)assert wallet.balance == 100@pytest.mark.parametrize(‘wallet’, [(20,)], indirect=True)def test_wallet_spend_cash(wallet):wallet.spend_cash(amount=10)assert wallet.balance == 10

整洁!不是吗。测试函数非常微妙,只做它们想做的事情。夹具钱包负责设置和拆卸、实例化和关闭钱包。它不仅有助于编写可重用的代码,还增加了数据分离的本质。如果仔细看,钱包数量是一块测试逻辑之外提供的测试数据,而不是硬编码在测试函数内部。

@pytest.mark.parametrize(‘wallet’, [(10,)], indirect=True)

在更可控的环境中,您可以在存储库中有一个测试数据文件,例如test-data.ini,以及读取该文件的包装器,并且您的测试函数可以调用包装器的另一个接口来读取测试数据。

但是,建议将您的fixture作为conftest.py文件的一部分。这是pytest中的一个特殊文件,它允许测试发现全局fixture。

但是,有一个针对许多不同数据集执行的测试用例!

不用担心,pytest有一个很酷的特性来参数化您的fixture。让我们用一个例子来看看它。

假设您的产品公开CLI接口以在本地管理它。此外,您的产品在启动时设置了许多默认参数,您需要验证所有这些参数的默认值。我们可以考虑为每个设置编写一个测试用例,但是使用pytest就容易得多了


@pytest.mark.parametrize(“setting_name, setting_value”, [(‘qdb_mem_usage’, ‘low’),(‘report_crashes’, ‘yes’),(‘stop_download_on_hang’, ‘no’),(‘stop_download_on_disconnect’, ‘no’),(‘reduce_connections_on_congestion’, ‘no’),(‘global.max_web_users’, ‘1024’),(‘global.max_downloads’, ‘5’),(‘use_kernel_congestion_detection’, ‘no’),(‘log_type’, ‘normal’),(‘no_signature_check’, ‘no’),(‘disable_xmlrpc’, ‘no’),(‘disable_ntp’, ‘yes’),(‘ssl_mode’, ‘tls_1_2’),])def test_settings_defaults(self, setting_name, setting_value):assert product_shell.run_command(setting_name) == \self.”The current value for \’{0}\’ is \’{1}\’.”.format(setting_name, setting_value), \‘The {} default should be {}’.format(preference_name, preference_value)

很酷,不是吗!,你只写了13个测试用例(每个不同setting_value),在未来如果你添加一个新的设置到你的产品,你需要做的就是,再添加一个tuple上面。

它是如何与selenium和API测试的UI测试集成的

嗯,你的产品可以有多种界面。CLI -就像我们上面讨论的。类似地,GUI和API。在部署软件之前,对所有软件进行测试是很重要的。在多个组件相互依赖和耦合的企业软件中,某个部分的更改可能会影响其他部分。

记住,pytest只是一个促进“测试”的框架,而不是特定类型的测试。因此,您可以使用selenium构建GUI测试,或者使用Python的请求库构建API测试,然后使用pytest运行它。

例如,在高层次上,这可能是您的测试存储库结构。
在这里插入图片描述

正如您在上面看到的,这可以很好地分离组件。

  •     apiobjects:为调用API端点创建包装器的好地方。您可以使用BaseAPIObject和派生类来满足您的需求。
  •     helper:编写您的helper方法
  •     库文件,它可以被不同的组件使用,例如你的fixture在conftest, pageobjects等。
  •     pageobjects:pageobjects设计模式可用于创建不同GUI页面的类。我们在站得住使
  •     用Webium,它是Python的一个页面对象模式实现库。
  •     套件:您可以在这里编写pylint代码验证套件,这将有助于您对代码质量有信心。
  •     测试:可以根据测试的风格对测试目录进行分类。它使管理和研究您的测试变得容易。

这只是供参考,存储库的结构和依赖关系可以按照您的需要进行布局。

我有足够的测试用例,想并行运行它们

您的测试套件中可能有大量的测试用例,并且有时您可能想并行地运行测试用例,以减少总体测试执行时间。

Pytest提供了一个很棒的并行运行测试的插件,名为Pytest -xdist,它用一些独特的执行模式扩展了Pytest。使用pip安装此插件
 

pip install pytest-xdist

让我们通过一个示例来快速研究它。

我有一个自动化测试存储库CloudApp,用于使用selenium进行GUI测试。此外,它还随着新的测试用例不断增长,现在已经有了数百个测试。我想做的是并行运行它们,并减少测试执行时间。

在终端中,只需在项目根文件夹/ tests文件夹中键入pytest。这将执行所有测试。
 

pytest -s -v -n=2

在这里插入图片描述

并行运行测试的pytest-xdist

这还可以帮助您在多个浏览器上并行运行测试。

报告

Pytest内置支持创建结果文件,可由Jenkins、Bamboo或其他持续集成服务器读取,使用如下调用:

pytest test/file/path — junitxml=path

 这可以生成很好的XML风格的输出,可以由许多CI系统解析器解释。

结论

Pytest的受欢迎程度逐年上升。此外,它还拥有广泛的社区支持,这让您可以访问很多扩展,比如pytest-django,它可以帮助您为Django web应用程序集成编写测试。记住,pytest支持运行unittest测试用例,所以如果您正在使用unittest, pytest是值得考虑的。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

这篇关于如何使用Pytest进行自动化测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093733

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma