关于for循环中调用fork()系统调用的执行原理解析

2024-08-21 13:32

本文主要是介绍关于for循环中调用fork()系统调用的执行原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于for循环中调用fork()系统调用的执行原理解析_fan1570285527的博客-CSDN博客

关于for循环中调用fork()系统调用的执行原理解析
该问题来源于操作系统概念(第九版)一书中的第三章的习题3.5,分析for循环中fork的执行原理
1、预备知识
2、题目解析
3、剖析原理
4、结论和意外发现
4.1、结论:
4.2、意外发现
该问题来源于操作系统概念(第九版)一书中的第三章的习题3.5,分析for循环中fork的执行原理
1、预备知识
fork()系统调用原理:
fork()系统调用用来创建新的进程,调用fork的进程为父进程,新创建的进程为子进程,新进程的地址空间复制了原来进程的地址空间,fork()函数执行完毕后,这两个进程(父和子)都继续执行处于系统调用fork()之后的指令,但有一点需要特别注意,fork()向新进程(子进程)的地址空间中返回0,而向父进程中返回的值为新进程的pid(进程标识符)。

解读:
关于 “新进程的地址空间复制了原来进程的地址空间” 这句话的话一开始我没太理解,后来搞清楚了,用大白话来讲的话就是,在fork执行完毕后,两个进程所拥有的所有东西都是一样的,书中也提到子进程就是父进程的一个copy,但是他们的区别是进程标识符----pid不同。

搞清楚了fork()系统调用的概念和原理后就可以接着来看这道题目了。

2、题目解析
题目描述:
请分析下列C程序创建了多少个进程?

#include <stdio.h>
#include <unistd.h>

int main() {
    int i;
    for (i = 0; i < 4; i++) {
        pid = fork();
    }
    return 0;
}
1
2
3
4
5
6
7
8
9
10
在不影响最终执行结果的基础上,我对原始代码进行了一点改动,加了一些打印和同步的语句方便分析运行结果

补充说明:

getpid()用来获取当前进程的进程标识符,我们显示为pid;
getppid() 用来获取当前进程的父进程的进程标识符,我们取别名叫做ppid;
wait(NULL); 语句的作用是等待当前进程的子进程执行完毕;
#include <stdio.h>
#include <unistd.h>

int main() {
    int i;
    int n = 4;
    printf("main process pid is :%d\n", getpid());
    pid_t pid;
    for (i = 0; i < n; i++) {
        pid = fork();
        if (pid < 0) {
            printf("fork failed...\n");
            return 1;
        } else if (pid == 0) {
            printf("child process... pid=%d  ppid=%d current i=%d\n", getpid(), getppid(), i);
        } else {
            printf("parent process... pid=%d  ppid=%d  current i=%d\n", getpid(), getppid(), i);    
            wait(NULL);
            printf("parent process... pid=%d his child compeleted...\n", getpid());
        }
    }
    return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
执行结果:

main process pid is :29574
parent process... pid=29574  ppid=22955  current i=0
child process... pid=29575  pid=29574 current i=0
parent process... pid=29575  ppid=29574  current i=1
child process... pid=29576  pid=29575 current i=1
parent process... pid=29576  ppid=29575  current i=2
child process... pid=29577  pid=29576 current i=2
parent process... pid=29576 his child compeleted...
parent process... pid=29575 his child compeleted...
parent process... pid=29575  ppid=29574  current i=2
child process... pid=29578  pid=29575 current i=2
parent process... pid=29575 his child compeleted...
parent process... pid=29574 his child compeleted...
parent process... pid=29574  ppid=22955  current i=1
child process... pid=29579  pid=29574 current i=1
parent process... pid=29579  ppid=29574  current i=2
child process... pid=29580  pid=29579 current i=2
parent process... pid=29579 his child compeleted...
parent process... pid=29574 his child compeleted...
parent process... pid=29574  ppid=22955  current i=2
child process... pid=29581  pid=29574 current i=2
parent process... pid=29574 his child compeleted...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
从执行结果中可以看出,加上我们原本的main进程,最终一共有16个进程。再仔细分析,我们可以发现他有点类似建树的过程。但是这样直接根据一次的结果来分析不太严谨。

3、剖析原理
我们将循环条件按照1 -> 5顺序依次调整,看执行结果。

当 n == 1 时,执行结果为:

main process pid is :516
parent process... pid=516  ppid=22955  current i=0
child process... pid=517  ppid=516 current i=0
parent process... pid=516 his child compeleted...
1
2
3
4
用树来表示: 图中方框内数字代表进程标识符pid,圆圈中数字表示当前进程中变量i的值


当 n == 2 时,执行结果为:

main process pid is :623
parent process... pid=623  ppid=22955  current i=0
child process... pid=624  ppid=623 current i=0
parent process... pid=624  ppid=623  current i=1
child process... pid=625  ppid=624 current i=1
parent process... pid=624 his child compeleted...
parent process... pid=623 his child compeleted...
parent process... pid=623  ppid=22955  current i=1
child process... pid=626  ppid=623 current i=1
parent process... pid=623 his child compeleted...
1
2
3
4
5
6
7
8
9
10
用树来表示:

当 n == 3 时,执行结果为:

main process pid is :1120
parent process... pid=1120  ppid=22955  current i=0
child process... pid=1121  ppid=1120 current i=0
parent process... pid=1121  ppid=1120  current i=1
child process... pid=1122  ppid=1121 current i=1
parent process... pid=1122  ppid=1121  current i=2
child process... pid=1123  ppid=1122 current i=2
parent process... pid=1122 his child compeleted...
parent process... pid=1121 his child compeleted...
parent process... pid=1121  ppid=1120  current i=2
child process... pid=1124  ppid=1121 current i=2
parent process... pid=1121 his child compeleted...
parent process... pid=1120 his child compeleted...
parent process... pid=1120  ppid=22955  current i=1
child process... pid=1125  ppid=1120 current i=1
parent process... pid=1125  ppid=1120  current i=2
child process... pid=1126  ppid=1125 current i=2
parent process... pid=1125 his child compeleted...
parent process... pid=1120 his child compeleted...
parent process... pid=1120  ppid=22955  current i=2
child process... pid=1127  ppid=1120 current i=2
parent process... pid=1120 his child compeleted...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
用树来表示:

当 n == 4 时,执行结果为:

main process pid is :1758
parent process... pid=1758  ppid=22955  current i=0
child process... pid=1759  ppid=1758 current i=0
parent process... pid=1759  ppid=1758  current i=1
child process... pid=1760  ppid=1759 current i=1
parent process... pid=1760  ppid=1759  current i=2
child process... pid=1761  ppid=1760 current i=2
parent process... pid=1761  ppid=1760  current i=3
child process... pid=1762  ppid=1761 current i=3
parent process... pid=1761 his child compeleted...
parent process... pid=1760 his child compeleted...
parent process... pid=1760  ppid=1759  current i=3
child process... pid=1763  ppid=1760 current i=3
parent process... pid=1760 his child compeleted...
parent process... pid=1759 his child compeleted...
parent process... pid=1759  ppid=1758  current i=2
child process... pid=1764  ppid=1759 current i=2
parent process... pid=1764  ppid=1759  current i=3
child process... pid=1765  ppid=1764 current i=3
parent process... pid=1764 his child compeleted...
parent process... pid=1759 his child compeleted...
parent process... pid=1759  ppid=1758  current i=3
child process... pid=1766  ppid=1759 current i=3
parent process... pid=1759 his child compeleted...
parent process... pid=1758 his child compeleted...
parent process... pid=1758  ppid=22955  current i=1
child process... pid=1767  ppid=1758 current i=1
parent process... pid=1767  ppid=1758  current i=2
child process... pid=1768  ppid=1767 current i=2
parent process... pid=1768  ppid=1767  current i=3
child process... pid=1769  ppid=1768 current i=3
parent process... pid=1768 his child compeleted...
parent process... pid=1767 his child compeleted...
parent process... pid=1767  ppid=1758  current i=3
child process... pid=1770  ppid=1767 current i=3
parent process... pid=1767 his child compeleted...
parent process... pid=1758 his child compeleted...
parent process... pid=1758  ppid=22955  current i=2
child process... pid=1771  ppid=1758 current i=2
parent process... pid=1771  ppid=1758  current i=3
child process... pid=1772  ppid=1771 current i=3
parent process... pid=1771 his child compeleted...
parent process... pid=1758 his child compeleted...
parent process... pid=1758  ppid=22955  current i=3
child process... pid=1773  ppid=1758 current i=3
parent process... pid=1758 his child compeleted...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
用树来表示:(为了方便,后面的图中省略了pid标识)

当 n == 5 时,由于篇幅限制,省略执行结果,直接上树图

几张树图应该表示的很清晰了,这里我们选取n == 5的树图进行解释:

首先main进程执行for循环,我们先不考虑子进程的执行,只考虑main进程的执行步骤,那么很简单就能知道他一定会循环5次,也就是说调用5次fork()创建了5个新的进程,在图中就是树的第二层,每个节点的数字代表当前变量i的值
接下来我们去分析第一个新进程,也就是第二层中的0号进程。因为fork()执行完毕后,新进程也会接着执行fork()系统调用后的代码,在这里就是继续执行for循环,首先进行i++操作,那么此时i == 1,只针对浅红色0号进程而言,for循环需要从i == 1开始执行,那么当前进程只会在循环4次,也就是创建出4个新的进程
剩下的以此类推,就可以得到完整的进程树
4、结论和意外发现
4.1、结论:
最朴素的计算方法就是按照上述图的解析的方法去画出进程树,最终统计出进程数中节点个数。

4.2、意外发现
如果我们从第一张图分析道第五张图,把关注点放在进程数的每层的节点数量上,我们可以很轻松的发现它每层的节点数量是关于中间层对称的,是不是超级像一个数学知识点 ------ 杨辉三角

先给出推论:

for循环中n的值和进程树的深度depth的关系为:depth = n + 1
for循环中n的值与杨辉三角的行line的值关系为:line = n + 1
结合上述两条,给定一个n,我们可以确定进程树中从上往下每层节点总数与杨辉三角中的第 line = n + 1行的数值一一对应。
当 n == 1 ,进程树深度为n + 1 = 2;从上到下每层节点总数分别为1、1;
当 n == 2 ,进程树深度为n + 1 = 3;从上到下每层节点总数分别为1、2、1;
当 n == 3 ,进程树深度为n + 1 = 4;从上到下每层节点总数分别为1、3、3、1;
当 n == 4 ,进程树深度为n + 1 = 5;从上到下每层节点总数分别为1、4、6、4、1;
当 n == 5 ,进程树深度为n + 1 = 6;从上到下每层节点总数分别为1、5、10、10、5、1;
个人结论: 给定循环边界n,可根据公式 全部进程数 = 杨辉三角第 n + 1 行的和; 计算出创建的所有进程数量。
————————————————
版权声明:本文为CSDN博主「fan1570285527」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/fan1570285527/article/details/121041080

这篇关于关于for循环中调用fork()系统调用的执行原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093291

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧