三角形最小路径和[中等]

2024-08-21 13:04
文章标签 中等 路径 最小 三角形

本文主要是介绍三角形最小路径和[中等],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

优质博文:IT-BLOG-CN
在这里插入图片描述

一、题目

给定一个三角形triangle,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标ii + 1

示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为11(即,2 + 3 + 5 + 1 = 11)。

示例 2:
输入:triangle = [[-10]]
输出:-10

1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104

进阶:你可以只使用O(n)的额外空间(n为三角形的总行数)来解决这个问题吗?

二、代码

本题是一道非常经典且历史悠久的动态规划题,其作为算法题出现,最早可以追溯到 1994 年的 IOI(国际信息学奥林匹克竞赛)的 The Triangle。时光飞逝,经过 20 多年的沉淀,往日的国际竞赛题如今已经变成了动态规划的入门必做题,不断督促着我们学习和巩固算法。

在本题中,给定的三角形的行数为 n,并且第 i 行(从 0 开始编号)包含了 i+1 个数。如果将每一行的左端对齐,那么会形成一个等腰直角三角形,如下所示:

[2]
[3,4]
[6,5,7]
[4,1,8,3]

方法一:动态规划

思路与算法

我们用 f[i][j] 表示从三角形顶部走到位置 (i,j) 的最小路径和。这里的位置 (i,j) 指的是三角形中第 i 行第 j 列(均从 0 开始编号)的位置。

由于每一步只能移动到下一行「相邻的节点」上,因此要想走到位置 (i,j),上一步就只能在位置 (i−1,j−1) 或者位置 (i−1,j)。我们在这两个位置中选择一个路径和较小的来进行转移,状态转移方程为:

f[i][j]=min(f[i−1][j−1],f[i−1][j])+c[i][j]
其中 c[i][j] 表示位置 (i,j) 对应的元素值。

注意第 i 行有 i+1 个元素,它们对应的 j 的范围为 [0,i]。当 j=0 或 j=i 时,上述状态转移方程中有一些项是没有意义的。例如当 j=0 时,f[i−1][j−1] 没有意义,因此状态转移方程为:

f[i][0]=f[i−1][0]+c[i][0]
即当我们在第 i 行的最左侧时,我们只能从第 i−1 行的最左侧移动过来。当 j=i 时,f[i−1][j] 没有意义,因此状态转移方程为:

f[i][i]=f[i−1][i−1]+c[i][i]
即当我们在第 i 行的最右侧时,我们只能从第 i−1 行的最右侧移动过来。

最终的答案即为 f[n−1][0] 到 f[n−1][n−1] 中的最小值,其中 n 是三角形的行数。

细节

状态转移方程的边界条件是什么?由于我们已经去除了所有「没有意义」的状态,因此边界条件可以定为:

f[0][0]=c[0][0]
即在三角形的顶部时,最小路径和就等于对应位置的元素值。这样一来,我们从 1 开始递增地枚举 i,并在 [0,i] 的范围内递增地枚举 j,就可以完成所有状态的计算。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] f = new int[n][n];f[0][0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {f[i][0] = f[i - 1][0] + triangle.get(i).get(0);for (int j = 1; j < i; ++j) {f[i][j] = Math.min(f[i - 1][j - 1], f[i - 1][j]) + triangle.get(i).get(j);}f[i][i] = f[i - 1][i - 1] + triangle.get(i).get(i);}int minTotal = f[n - 1][0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[n - 1][i]);}return minTotal;}
}

时间复杂度: O(n ^ 2),其中n是三角形的行数。
空间复杂度: O(n ^ 2)。我们需要一个n∗n的二维数组存放所有的状态。

方法二:动态规划 + 空间优化

思路与算法

在题目描述中的「进阶」部分,提到了可以将空间复杂度优化至 O(n)。

我们回顾方法一中的状态转移方程:

f[i][j]= f[i−1][0]+c[i][0],j=0
f[i][j]=f[i−1][i−1]+c[i][i],j=i
f[i][j]=min(f[i−1][j−1],f[i−1][j])+c[i][j],otherwise

可以发现,f[i][j] 只与 f[i−1][…] 有关,而与 f[i−2][…] 及之前的状态无关,因此我们不必存储这些无关的状态。具体地,我们使用两个长度为 n 的一维数组进行转移,将 i 根据奇偶性映射到其中一个一维数组,那么 i−1 就映射到了另一个一维数组。这样我们使用这两个一维数组,交替地进行状态转移。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] f = new int[2][n];f[0][0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {int curr = i % 2;int prev = 1 - curr;f[curr][0] = f[prev][0] + triangle.get(i).get(0);for (int j = 1; j < i; ++j) {f[curr][j] = Math.min(f[prev][j - 1], f[prev][j]) + triangle.get(i).get(j);}f[curr][i] = f[prev][i - 1] + triangle.get(i).get(i);}int minTotal = f[(n - 1) % 2][0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[(n - 1) % 2][i]);}return minTotal;}
}

上述方法的空间复杂度为 O(n),使用了 2n 的空间存储状态。我们还可以继续进行优化吗?

答案是可以的。我们从 i 到 0 递减地枚举 j,这样我们只需要一个长度为 n 的一维数组 f,就可以完成状态转移。

为什么只有在递减地枚举 j 时,才能省去一个一维数组?当我们在计算位置 (i,j) 时,f[j+1] 到 f[i] 已经是第 i 行的值,而 f[0] 到 f[j] 仍然是第 i−1 行的值。此时我们直接通过

f[j]=min(f[j−1],f[j])+c[i][j]
进行转移,恰好就是在 (i−1,j−1) 和 (i−1,j) 中进行选择。但如果我们递增地枚举 j,那么在计算位置 (i,j) 时,f[0] 到 f[j−1] 已经是第 i 行的值。如果我们仍然使用上述状态转移方程,那么是在 (i,j−1) 和 (i−1,j) 中进行选择,就产生了错误。

这样虽然空间复杂度仍然为 O(n),但我们只使用了 n 的空间存储状态,减少了一半的空间消耗。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[] f = new int[n];f[0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {f[i] = f[i - 1] + triangle.get(i).get(i);for (int j = i - 1; j > 0; --j) {f[j] = Math.min(f[j - 1], f[j]) + triangle.get(i).get(j);}f[0] += triangle.get(i).get(0);}int minTotal = f[0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[i]);}return minTotal;}
}

时间复杂度: O(n ^ 2),其中 n 是三角形的行数。
空间复杂度: O(n)。

这篇关于三角形最小路径和[中等]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093231

相关文章

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-