Python实现台阶问题/斐波纳挈

2024-08-21 08:36

本文主要是介绍Python实现台阶问题/斐波纳挈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中实现台阶问题(也常被称作爬楼梯问题)和斐波那契数列(Fibonacci sequence)是编程中的经典问题。虽然这两个问题在表面上看起来不同,但它们之间有着紧密的联系,因为台阶问题的一种常见解法就是使用斐波那契数列。

台阶问题

假设你正在爬楼梯。需要 n 步你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

这个问题可以通过递归或动态规划来解决,使用斐波那契数列的思路。

递归解法(效率较低,因为存在大量重复计算)

def climbStairs(n: int) -> int:  if n <= 1:  return 1  elif n == 2:  return 2  else:  return climbStairs(n-1) + climbStairs(n-2)

动态规划解法(更高效)

def climbStairs(n: int) -> int:  if n <= 1:  return 1  dp = [0] * (n+1)  dp[1] = 1  if n >= 2:  dp[2] = 2  for i in range(3, n+1):  dp[i] = dp[i-1] + dp[i-2]  return dp[n]

斐波那契数列

斐波那契数列是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...,即第一项是0,第二项是1,从第三项开始,每一项都等于前两项之和。

递归解法(同样效率较低)

def fibonacci(n: int) -> int:  if n <= 0:  return 0  elif n == 1:  return 1  else:  return fibonacci(n-1) + fibonacci(n-2)

动态规划解法(更高效)

def fibonacci(n: int) -> int:  if n <= 1:  return n  dp = [0] * (n+1)  dp[1] = 1  for i in range(2, n+1):  dp[i] = dp[i-1] + dp[i-2]  return dp[n]

或者,使用记忆化递归,这也是一种提高递归效率的方法:

def fibonacci_memo(n: int, memo: dict = None) -> int:  if memo is None:  memo = {0: 0, 1: 1}  if n not in memo:  memo[n] = fibonacci_memo(n-1, memo) + fibonacci_memo(n-2, memo)  return memo[n]

在Python中,对于递归解法,尤其是当n较大时,由于Python的递归深度限制(默认1000),可能无法直接计算,而动态规划或记忆化递归是更好的选择。

这篇关于Python实现台阶问题/斐波纳挈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092659

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符