树状数组实现矩阵中矩形区域的修改以及求和

2024-08-21 08:08

本文主要是介绍树状数组实现矩阵中矩形区域的修改以及求和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

树状数组实现矩形区域的修改以及求和

                 By 岩之痕

讲讲树状数组如何实现对一个矩阵的矩形区域的加法和求和。

以下,(x1,y1)为矩形的左下角坐标,(x2,y2)为矩形的右上角坐标(x1<=x2 , y1<=y2)


矩形加法:Add(int x1,int y1,int x2,int y2,int K)表示给指定矩形区域的元素都加上K

矩形求和:Sum(int x1,int y1,int x2,int y2)  即求

思路就是通过差分,化区间修改为点修改,然后用树状数组来解决。

由于要用到树状数组,以下所有数组下标都从1开始,并令A[0]=0,方便讨论。

先说说一维的情况:

对于一维数组A,要求区间和,首先化区间和为前缀和:

于是只需要讨论如何求前缀和()就行了。

对于区间修改,直接用树状数组来维护A的前缀和是O(n)的时间复杂度。

树状数组只支持点修改,于是,想一想,怎么化区间修改为点修改?

考虑数组a[i]=A[i]-A[i-1](注意边界条件A[0]=0,所以i=1的时候这个式子也是符合的),

A数组的区间[L,R]都加上K的时候,a数组只有两个值改变了,

 a[L] 多了K  ,a[R+1] 少了K,这就做到了化区间修改为点修改。

我们再来看看如何从a[i]来得到A[i]的前缀和。

首先注意到:

前缀和的计算如下:



扩展到二维的情况:

开始讲二维的情况:

类似一维情况中化区间和为前缀和之差的方法,有如下公式:

于是只需要解决这个问题:

思路当然还是差分,首先纵向差分:

,则

于是:


此时,b[i][j]+= t 代表的含义就是b[i][j],b[i][j+1],...,b[i][n]都增加了t.

也就是实现了纵向的化区间修改为点修改。

要修改一个矩形区域,也就是需要连续修改i在一个区间的b[i][j],于是将b[i][j]再横向差分,


(2)式代入(1)式:


由上面公式看出,只需要维护下面四个元素的矩阵和,就可以求出


所以,用二维树状数组维护上面四个矩阵和就行了。

此时a[i][j]+=t,代表b[i][j],b[i+1][j],...,b[n][j]都增加了t,

也就代表

A[i][j],A[i][j+1],...A[i][n]都增加了t

A[i+1][j],A[i+1][j+1],...A[i+1][n]都增加了t

...

A[n][j],A[n][j+1],...A[n][n]都增加了t

于是矩形区域的加法也就不难表示了,调用4Add(点修改)就行了。

矩形区域的求和也不难表示了,调用4Sum就行了。

void AddSquare(int x1,int y1,int x2,int y2,int K){Add(x1,y1,K);Add(x2+1,y2+1,K);Add(x1,y2+1,-K);Add(x2+1,y1,-K);
}
long long SumSquare(int x1,int y1,int x2,int y2){return Sum(x2,y2)-Sum(x1-1,y2)-Sum(x2,y1-1)+Sum(x1-1,y1-1);
}


时间复杂度:

暴力法做矩形修改的话,时间复杂度是

二维树状数组的时间复杂度:

数组元素个数为1000*1000的时候,Sum操作平均用到24.38个数组元素,

Add操作平均用到25.60个数组元素。

由于本题维护了4个数组,所以每个Sum平均涉及97.52个元素。

所以每个Add平均涉及102.40个元素。

然后每次操作用到了4Add或者4Sum.

所以二维树状数组每次操作平均更改400个数组元素的值。

同等情况下,暴力法需要更改的元素个数最少为1,最多为10^6.

1000*1000,随机数据的情况下暴力法平均每次操作更改62500元素,极限数据下更改1000000元素

随机数据下用时是二维树状数组的156倍,极限数据下是2500倍。


1000*1000时,10000个对整个数组的操作时(极限数据),减去输入输出的时间之后:

二维树状数组的用时:0.013s,暴力法用时:39.517s  约为3000倍。


1000*1000,随机进行100000次操作时,减去输入输出时间后:

二维树状数组用时:0.314s  暴力法用时:47.27s. 约为150.54倍。


实验跟计算基本符合。

最后附上代码:

#define LL long long
int n,m; 
LL A[1027][1027][4];
LL C[4]; 
void Add(int x,int y,LL K){//点修改C[0]=K;C[1]=K*y;C[2]=K*x;C[3]=K*x*y;int xx=x;while(xx <= n){int yy=y; while(yy <= n){A[xx][yy][0]+=C[0];A[xx][yy][1]+=C[1];A[xx][yy][2]+=C[2];A[xx][yy][3]+=C[3];yy+=yy&-yy; }xx+=xx&-xx;}
}
LL Sum(int x,int y){//1..x,1..y的区域求和C[0]=C[1]=C[2]=C[3]=0; int xx=x;while(xx > 0){int yy=y;while(yy > 0){C[0]+=A[xx][yy][0];C[1]+=A[xx][yy][1];C[2]+=A[xx][yy][2];C[3]+=A[xx][yy][3];yy-=yy&-yy;}xx-=xx&-xx;}return (x+1)*(y+1)*C[0]-(x+1)*C[1]-(y+1)*C[2]+C[3];
}
void AddSquare(int x1,int y1,int x2,int y2,int K){//矩形区域的修改Add(x1,y1,K);Add(x2+1,y2+1,K);Add(x1,y2+1,-K);Add(x2+1,y1,-K);
}
LL SumSquare(int x1,int y1,int x2,int y2){//矩形区域的求和return Sum(x2,y2)-Sum(x1-1,y2)-Sum(x2,y1-1)+Sum(x1-1,y1-1);
}


这篇关于树状数组实现矩阵中矩形区域的修改以及求和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092594

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S