林轩田机器学习基石1:机器学习问题(The Learning Problem)

2024-08-21 07:48

本文主要是介绍林轩田机器学习基石1:机器学习问题(The Learning Problem),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注公众号-AI圈终身学习。
公众号首页回复“机器学习”查看所有系列文章。


机器学习基石课程大概八周,分为四个部分:

  • When Can Machines Learn?
  • Why Can Machines Learn?
  • How Can Machines Learn?
  • How Can Machines Learn Better?

课程主页:
http://www.csie.ntu.edu.tw/~htlin/

本节笔记Lecture 1-The Learning Problem包含内容如下:

  • When Can Machines Learn?(什么时候用机器学习)
    • What is Machine learning(什么是机器学习)
    • Applications of Machine Learning(机器学习应用)
    • Components of Machine Learning(机器学习组成部分)
    • Machine Learning and Other Fields(机器学习和其他领域)

一、什么是机器学习(What is Machine Learning)

机器学习和学习的异同是什么?首先学习和机器学习的共通性就是观察,他们也有差异性。

1.1 学习的流程

学习的主体是人,人通过观察(听、观、触觉)出发,经过脑袋的内化转化,变成有用的技能。流程图如下:

1.2 机器学习的流程

机器学习的主体是电脑,电脑通过观察资料(语料),经过电脑的CPU运作,变成对电脑有用的技能。流程图如下:

什么是“变成有用的技能”?技能就是在某种领域做事靠谱,比如

  • 对于人,自己的英语能力、数学能力得到了提高
  • 对于电脑,预测股票的能力得到了提高

因此机器学习更准确的定义是:
通过观察计算有规律的数据,根据某种评价指标,提升电脑性能。
流程图如下:

1.3机器学习的三个关键要素

什么时候适合使用机器学习,林老师总结三个关键要素如下:

  1. 编程定义不明确,普通编程难以完成的任务
  2. 资料数据具有某种潜藏的规律,可以学习
  3. 有关于潜藏的规律资料数据

(测试题)下面哪种情况最适合使用机器学习?

  1. 预测小女孩下一次哭的时间是奇数还是偶数(No,没有规律)
  2. 判断一个图是否有环(No,可以编程定义明确)
  3. 预测下一个十年地球是否会毁灭(No,没有数据)
  4. 决定是否同意给用户办理信用卡(Yes,有用户历史行为数据且难以编程解决)

二、机器学习应用(Applications of Machine Learning)

  • 衣(Abu-Mostafa, 2012)
    • 技能:穿衣搭配推荐
    • 数据:衣服销售数字+顾客调差反馈
  • 食(Sadilek et al., 2013)
    • 技能:正确告诉餐厅食物中毒的可能性
    • 数据:用户的Twitter数据(评论的文字+餐厅地点)
  • 住(Tsanas and Xifara, 2012)
    • 技能:预测建房所需能源消耗
    • 数据:历史修建房屋的能源消耗数据
  • 行(Stalkamp et al., 2012)
    • 技能:识别交通信号
    • 数据:交通信号图片和含义数据

除此之外,还有教育(流利说)、金融(信用卡办理)、医疗(药效预测)、法律(摘要)、娱乐(推荐系统)等各种行业。

二、机器学习组成部分(Components of Learning)


以信用卡办理为例,任务是给要用信用卡花钱的用户办理。机器学习组件如下:

  • 输入X(银行用户数据特征,如年龄、性别、工资等)
  • 输出Y(办卡后刷还信用卡的好坏)
  • 训练数据 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) D={(x_1, y_1),(x_2, y_2),...,(x_n, y_n)} D=(x1,y1),(x2,y2),...,(xn,yn)
  • 目标函数 f : x → y f:x \rightarrow y f:xy(理想的函数,表示实际训练数据的分布规律,但是未知)
  • 假设集合H(hypothesis set),我们需要通过算法学到集合中最佳的假设,其对应的函数为 g : x → y g:x \rightarrow y g:xy我们希望最终的模型表达式 g 满 足 g ≈ f g满足g\approx f ggf

机器学习整个流程可以表示如下:

比如以上面的信用卡办理为例,假设其中的hypothesis set H为:

  • h1: 年薪 > 80万
  • h2: 欠款 > 10 万
  • h3: 工龄 < 2年

我们的H中的假设有好有坏,我们通过演算法A去选择最好的一个作为g。

因此我们在机器学习中常说的模型是 演算法A+假设集合H

我们再以预测用户给歌曲打分(0-100分)为例,我们有:

训练数据D = 100万条((userid, songid), rating)对
输入X = 所有可能的(userid, songid)对
输出Y = [0, 100]
假设集合H = 将用户因素和歌曲因子相乘,并由所有可能的因素组合索引

我们以训练数据D为入口,通过演算法A选出H中最好的假设得到g。

四、机器学习和其他领域(Machine Learning and Other Fields)

  • 机器学习与统计

  • 机器学习与数据挖掘

  • 机器学习与人工智能

总结来说:

  • 统计可以实现机器学习
  • 机器学习和数据挖掘相互缠绕,难以区分
  • 机器学习是实现人工智能的一种方式

五、总结

本节主要概括性的讲了机器学习的方方面面,高层笼统,概念清晰,没有太多技术性的东西。

这篇关于林轩田机器学习基石1:机器学习问题(The Learning Problem)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092554

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原