码农小汪-JVM的重排序

2024-08-21 00:58
文章标签 java jvm 排序 码农小汪

本文主要是介绍码农小汪-JVM的重排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前看过JVM本书,好多东西都还没有理解透,今天发现了重排序,有必要去网上找点资料来说说,放在自己的博客中,好观看。自己也加深印象。虽然不经常使用。但是概念还是必须要有的涩。
我自己记得,就是按照顺序的执行动作,最近忙起来,没有复习这个东西啦,要学习的东西还有很多啦。

重排序通常是编译器或运行时环境为了优化程序性能而采取的对指令进行重新排序执行的一种手段。重排序分为两类:编译期重排序和运行期重排序,分别对应编译时和运行时环境。

在并发程序中,程序员会特别关注不同进程或线程之间的数据同步,特别是多个线程同时修改同一变量时,必须采取可靠的同步或其它措施保障数据被正确地修改,这里的一条重要原则是:不要假设指令执行的顺序,你无法预知不同线程之间的指令会以何种顺序执行。

但是在单线程程序中,通常我们容易假设指令是顺序执行的,否则可以想象程序会发生什么可怕的变化。理想的模型是:各种指令执行的顺序是唯一且有序的,这个顺序就是它们被编写在代码中的顺序,与处理器或其它因素无关,这种模型被称作顺序一致性模型,也是基于冯·诺依曼体系的模型。当然,这种假设本身是合理的,在实践中也鲜有异常发生,但事实上,没有哪个现代多处理器架构会采用这种模型,因为它是在是太低效了。而在编译优化和CPU流水线中,几乎都涉及到指令重排序

一、编译期重排序

编译期重排序的典型就是通过调整指令顺序,在不改变程序语义的前提下,尽可能减少寄存器的读取、存储次数,充分复用寄存器的存储值。

假设第一条指令计算一个值赋给变量A并存放在寄存器中,第二条指令与A无关但需要占用寄存器(假设它将占用A所在的那个寄存器),第三条指令使用A的值且与第二条指令无关。那么如果按照顺序一致性模型,A在第一条指令执行过后被放入寄存器,在第二条指令执行时A不再存在,第三条指令执行时A重新被读入寄存器,而这个过程中,A的值没有发生变化。通常编译器都会交换第二和第三条指令的位置,这样第一条指令结束时A存在于寄存器中,接下来可以直接从寄存器中读取A的值,降低了重复读取的开销。

二、重排序对于流水线的意义

现代CPU几乎都采用流水线机制加快指令的处理速度,一般来说,一条指令需要若干个CPU时钟周期处理,而通过流水线并行执行,可以在同等的时钟周期内执行若干条指令,具体做法简单地说就是把指令分为不同的执行周期,例如读取、寻址、解析、执行等步骤,并放在不同的元件中处理,同时在执行单元EU中,功能单元被分为不同的元件,例如加法元件、乘法元件、加载元件、存储元件等,可以进一步实现不同的计算并行执行。

流水线架构决定了指令应该被并行执行,而不是在顺序化模型中所认为的那样。重排序有利于充分使用流水线,进而达到超标量的效果。

三、确保顺序性

尽管指令在执行时并不一定按照我们所编写的顺序执行,但毋庸置疑的是,在单线程环境下,指令执行的最终效果应当与其在顺序执行下的效果一致,否则这种优化便会失去意义。

通常无论是在编译期还是运行期进行的指令重排序,都会满足上面的原则。

四、Java存储模型中的重排序

在Java存储模型(Java Memory Model, JMM)中,重排序是十分重要的一节,特别是在并发编程中。JMM通过happens-before法则保证顺序执行语义,如果想要让执行操作B的线程观察到执行操作A的线程的结果,那么A和B就必须满足happens-before原则,否则,JVM可以对它们进行任意排序以提高程序性能。

volatile关键字可以保证变量的可见性,因为对volatile的操作都在Main Memory中,而Main Memory是被所有线程所共享的,这里的代价就是牺牲了性能,无法利用寄存器或Cache,因为它们都不是全局的,无法保证可见性,可能产生脏读。

volatile还有一个作用就是局部阻止重排序的发生,对volatile变量的操作指令都不会被重排序,因为如果重排序,又可能产生可见性问题。

在保证可见性方面,锁(包括显式锁、对象锁)以及对原子变量的读写都可以确保变量的可见性。但是实现方式略有不同,例如同步锁保证得到锁时从内存里重新读入数据刷新缓存,释放锁时将数据写回内存以保数据可见,而volatile变量干脆都是读写内存

这篇关于码农小汪-JVM的重排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091669

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node