23+ 顶刊纯公开数据库建模!病理切片预测基因表达与患者治疗反应,原文提供了非常清晰的代码实现!

本文主要是介绍23+ 顶刊纯公开数据库建模!病理切片预测基因表达与患者治疗反应,原文提供了非常清晰的代码实现!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像预测基因表达

病理学长期以来被认为是癌症临床诊断和预后的金标准。随着数字病理学的快速进步,机器学习和人工智能方法在图像分析中的应用,使得从肿瘤切片中提取临床相关信息成为可能。利用这些技术,全视野切片图像(WSI)结合苏木精-伊红(H&E)染色的组织切片已经用于计算机化的各类研究,这包括:肿瘤诊断、癌症类型分类、区分高低突变负荷的肿瘤、识别基因突变、预测患者生存、检测DNA甲基化模式和有丝分裂、以及量化肿瘤免疫浸润和空间免疫细胞浸润等等。

图片

▲ TCGA数据库中肿瘤样本的病理染色切片

2024年7月3日,来自美国癌症研究所(NCI)的研究人员在Nature Cancer[23.5]期刊上提出了一种名为ENLIGHT–DeepPT的深度学习框架,旨在通过组织切片图像预测癌症治疗的反应。文章中,研究团队详细介绍了如何利用DeepPT模型预测肿瘤基因表达,并结合ENLIGHT模型预测患者对靶向和免疫治疗的反应。通过对16个癌症类型的大规模数据集进行验证,ENLIGHT–DeepPT在多种独立患者队列中成功预测了真实的免疫治疗反应者。

▲ 10.1038/s43018-024-00793-2

小编先前冲浪的时候看到了这篇文章,其网络结构与设计并不复杂,并且没有任何的实验内容。整体讲讲,DeepPT 包括了四个主要组成部分:

  • (i) 图像预处理:将每张全幅切片图像分割成小块/补丁,仅选择包含组织的块,排除背景区域。包括颜色标准化,以最小化染色变化(异质性和批次效应)。

  • (ii) 特征提取:使用预训练的 ResNet50 CNN 模型从图像块中提取特征。通过这一过程,每个图像块由 2,048 个衍生特征(预训练 ResNet 特征)表示。

  • (iii) 特征压缩:通过自编码器网络将2,048个预训练ResNet特征压缩为512个特征。

  • (iv) 预测表达:一个两层神经网络该组件以自编码器特征作为输入,以基因表达作为输出。

  • (v) 预测患者治疗反应:使用ENLIGHT方法预测患者对靶向和免疫治疗的反应

图片

▲ a. DeepPT 架构的三个主要组件:预训练的 ResNet50 卷积神经网络(CNN)单元(左)从切片图像中提取组织病理特征;自编码器(中)将 2,048 个特征压缩到 512 个特征的较低维度;MLP(右)整合这些组织病理特征以预测样本的基因表达。b. ENLIGHT 流程概述(插图取自文献47):ENLIGHT 从各种癌症体外和临床数据源中推断给定药物的 GI 伴侣。基于 SL 和 SR 伴侣以及给定患者样本的转录组数据,ENLIGHT 计算药物匹配评分,用于预测患者的药物响应。在这里,ENLIGHT 使用 DeepPT 预测的表达数据为每个研究的患者生成药物匹配评分。c. 使用 DeepPT 和 ENLIGHT 的分析概述。顶部行,DeepPT 使用 FFPE 切片图像和 TCGA 中不同癌症类型的匹配转录组数据进行训练。中间行,训练阶段后,将模型应用于内部(保留的)TCGA 数据集和两个未进行训练的外部数据集,以预测基因表达。底部行,预测的肿瘤转录组数据在五个独立测试临床数据集中作为输入,供 ENLIGHT 预测患者的治疗响应并评估整体预测准确性。

上面所说的ENLIGHT是另一篇文章开发的,这里我们不细讲。主要还是来看看作者是怎么通过图像预测基因表达的:

① 图像预处理openslide 、utils_color_norm以及 PIL 库分别用来图像读取以及处理显微镜切片。

② 基于最常用的torchvision库,用预训练好的ResNet50网络进行特征提取(代码看着并不复杂,只是简单的加载他人预训练的模型ResNet50_IMAGENET1K_V2.pt):

model = Feature_Extraction(model_type="load_from_saved_file")
model.to(device)
model.load_state_dict(torch.load("../ResNet50_IMAGENET1K_V2.pt", map_location=device))
model.eval()batch_size = 64
torch_resize = transforms.Resize(224)
tiles_list_resized = []
for i in range(n_tiles):tiles_list_resized.append(torch_resize(tiles_list[i]))
tiles_list = tiles_list_resizeddata_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])def extract_features_from_tiles(tiles_list):tiles = [data_transform(tile).unsqueeze(0) for tile in tiles_list]tiles = torch.cat(tiles, dim=0)features = []for idx_start in range(0, len(tiles), batch_size):idx_end = idx_start + min(batch_size, len(tiles) - idx_start)feature = model(tiles[idx_start:idx_end])features.append(feature.detach().cpu().numpy())return np.concatenate(features)if extract_pretrained_features:features = extract_features_from_tiles(tiles_list)np.save(f"{path2features}{slide_name}.npy", features)

这个预训练的ResNet50模型是使用ImageNet数据库进行训练的,后者是一个大型视觉数据库,包含了约1400万张自然图像,用于各类文章训练深度学习模型进行图像分类。通过使用在ImageNet上训练好的ResNet50模型,作者从图像切片中提取了2048个特征。

③ 使用自编码器降维特征,从2048到512,网络的结构如下:

class AutoEncoder(nn.Module):def __init__(self, n_inputs, n_hiddens, n_outputs):super(AutoEncoder, self).__init__()self.encoder = nn.Sequential(nn.Linear(n_inputs,n_hiddens),nn.ReLU())self.decoder = nn.Sequential(nn.Linear(n_hiddens,n_outputs),nn.ReLU())def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x

竟然是个一层的自编码器,泪目了

④ 使用上一步自编码器提取的512个特征,预测基因表达。模型使用的是只有两层的神经网络,看代码注释我相信作者也曾经努力试过1维的卷积:

class MLP_regression(nn.Module):def __init__(self, n_inputs, n_hiddens, n_outputs, dropout, bias_init):super(MLP_regression, self).__init__()self.layer0 = nn.Sequential(#nn.Conv1d(in_channels=n_inputs, out_channels=n_hiddens,kernel_size=1, stride=1, bias=True),nn.Linear(n_inputs,n_hiddens),#nn.ReLU(),  ## 2020.03.26: for positive gene expressionnn.Dropout(dropout))#self.layer1 = nn.Conv1d(in_channels=n_hiddens, out_channels=n_outputs,kernel_size=1, stride=1, bias=True)self.layer1 = nn.Linear(n_hiddens, n_outputs)## ---- set bias of the last layer ----if bias_init is not None:self.layer1.bias = bias_init##-------------------------------------def forward(self, x):#print("x.shape - input of forward:", x.shape)    ## [n_tiles,512]x = self.layer0(x)x = self.layer1(x)#print("x.shape - before mean:", x.shape)        ## [n_tiles,512]x = torch.mean(x, dim=0)                        ## sum over tiles#print("x.shape -- after mean:", x.shape)        ## [n_genes]                     return x  ## predicted gene_values [n_genes]
  • 损失函数很简单,一个自编码器的重构损失,一个MLP的MSELoss

整体并不难实现

如果通过图像把基因表达预测出来了 

后续想再接什么其它任务

那就很灵活了

发点小文章绝对够顶了

感兴趣的铁子们可以去复现看看

源码在正文提供了链接

这篇关于23+ 顶刊纯公开数据库建模!病理切片预测基因表达与患者治疗反应,原文提供了非常清晰的代码实现!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090523

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter