神经网络第三篇:输出层及softmax函数

2024-06-24 11:18

本文主要是介绍神经网络第三篇:输出层及softmax函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在上一篇专题中,我们以三层神经网络的实现为例,介绍了如何利用Python和Numpy编程实现神经网络的计算。其中,中间(隐藏)层和输出层的激活函数分别选择了 sigmoid函数和恒等函数。此刻,我们心中不难发问:为什么要花一个专题来介绍输出层及其激活函数?它和中间层又有什么区别?softmax函数何来何去?下面我们带着这些疑问进入本专题的知识点:

1 输出层概述

2 回归问题及恒等函数

3 分类问题及softmax函数

4 Python编程softmax函数

1 输出层概述

神经网络/深度学习本质上都属于机器学习问题,而我们知道,机器学习一般分为监督学习非监督学习,生活中,我们应用更多的是监督学习(简单来说需要事先通过已知的输入输出数据进行学习,然后对未知的输入数据进行预测),以神经网络为例,学习的结果,即输出层的输出值y。该输出值既可以是一个连续的无范围约束的数值(回归问题),也可以是一个离散的范围被限制(一般在0至1之间)的数值(分类问题)。所以针对不同的问题,我们对输出层的设计,即激活函数的设计应不同。一般情况下,在神经网络中,回归问题选择恒等函数作为激活函数,分类问题选择softmax函数作为激活函数


小提示:

监督学习又分为回归问题分类问题。如果想对机器学习有一个透彻而全面的理解,给大家推荐一本OReilly出版的书籍《Introduction to MachineLearning with Python》,不知道现在是否发布了中文版,但网上已经有了很多读者自己上传的中文笔记,大家也可在我的博客中获取本人上传的阅读笔记。


2 回归问题及恒等函数

回归”一词对于理工科的人来说并不陌生,直观地讲,回归问题是根据输入来预测一个连续的数值的问题。比如根据一个人的日常饮食量来预测这个人的体重,这就是一个回归问题。为让大家更加明白,我们以数学表达式为例:

                                                       

上面这个回归问题,以神经网络模型为例,首先需要向神经网络提供已知的正确的输入(食饭量和食肉量)和输出(体重),通过这些信息,模型学到了变量的权重。然后就可以对输入进行输出预测。

不难理解,我们并不需要对这样的信号加权和进行其他处理,也就是说我们直接输出食饭量和食肉量的加权和即可。因此,在输出层的设计中,输入信号应该原封不动地被输出,即激活函数h()应该选择恒等函数(用σ()表示),如下图:

                                                                       

由于激活函数选择的是恒等函数,因此输出值没有在我们的预定范围内。

3 分类问题及softmax函数

3.1 分类问题

顾名思义,“分类”就是判断一个数据集所描述的类别,比如判断图像中的人是男还是女,这里的数据集是图像数据,类别有男和女两个类别。既然是判断,那么它应该是一个概率性的问题,打个比方,一个画了浓妆艳抹的男扮女装,仅看照片,我们为了防止说话过于绝对,会以这样的方式表达:我觉得这照片有可能是男的;我觉得这照片很有可能是男的。以概率描述:我觉得这张照片是男性的可能性为60%(0.6);我觉得这张照片是男性的可能性是90%(0.9)

因此,我们对分类问题的判断结果,实际上是来自于概率。我们用上图来分析分类问题:图中的输出信号有三个y1、y2、y3,我们可以理解为这是一个三类别分类,对于输入的数据集,神经网络通过计算后得到值y1、y2、y3。这三个值的大小都应该在01之间,且它们的和应该为1。对于一个输入来说,神经网络预测的结果就是y1、y2、y3中最大值所对应的类别。比如y1、y2、y3的值分别为0.2、0.7、0.1,那么神经网络对这个输入的预测结果就是类别“乙”。

                                                                

3.2 softmax函数

通过上面的分析,回归问题我们只需将输出层的输入信号原封不动地输出即可,而分类问题我们需要考虑两个问题:

(1)每个输出信号值在0至1之间。

(2)所有输出信号的和为1。

基于以上要求,分类问题中,输出层的激活函数常用softmax函数:

                                                             

exp(x)表示ex的指数函数,ak是输出层中第k个输入信号,exp(ak)表示ak的指数函数。分母表示输出层共有n个输出信号(神经元),并计算所有输出层中的输入信号的指数和。yk是第k个神经元的输出。

仔细分析,该函数实际上等同于一个求占比的公式,读者可验证,信号加权和经softmax函数处理后完全满足上面两点要求。可以说,softmax函数很普通,只需完成指数运算求和运算除法运算

4 Python编程softmax函数

 我们已经知道了y1、y2、y3都会有一个0至1之间的数值。而最后的分类结果则取决于这三个值中最大值所对应的类别。借助numpy的广播功能就能轻松实现这样的操作。在这之前,我们需要考虑一个数值过大(溢出)的问题:softmax需要计算指数和,比如当ak中的某个值为1000时,其指数将是无穷大,由于计算机处理数值位数有限,因此有可能无法进行指数或求和运算。

为了解决这个潜在问题,我们对softmax函数作一下处理:

                              

公式表明在进行softmax的指数运算时,加上某个常数不会改变运算的结果。为了防止结果值溢出,一般会使用输入信号中的最大值的负数为这个常数,Python编程代码如下:

import numpy as np
def softmax(a):c=np.max(a) #求数组中的最大值exp=np.exp(a-c)  #指数运算sum_exp=np.sum(exp) #指数求和y=exp/sum_exp        #softmax函数值return y
"""测试"""
a=np.array([0.4,5,3])
y=softmax(a)
print(y)  #输出[0.00877593 0.87306727 0.11815681]
print(y.sum())  #输出1

程序是不是很简单?是的,在上一专题讲过的三层神经网络实现的代码中只需将恒等函数equal_function()替换为softmax()函数即可。softmax函数的输出是0到1,且输出值的总和为1,因此把softmax函数的输出概率解释为“概率”。一般而言,神经网络只把输出值最大的神经元所对应的类别作为识别结果。比如测试代码中计算得到y的输出最大值为y[1]=0.87,因此对于这个输入数据而言,预测的分类为“乙类”,也可以说有87%的概率认为预测结果为“乙类”。

总结一下,这个专题介绍了输出层及其激活函数、回归问题、分类问题、恒等函数和softmax函数。在介绍这些知识点的过程中,我们始终以预测结果为背景展开的,因此阅读完这篇文章,读者应该对机器学习或者神经网络的预测的流程有一定了解。

下一专题,我们将以手写数字识别为例,对前面的知识作整体的终结。 欢迎关注“Python生态智联”,学知识,享生活!

这篇关于神经网络第三篇:输出层及softmax函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1089997

相关文章

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(