线性回归(Linear Regression)原理详解及Python代码示例

2024-06-24 09:44

本文主要是介绍线性回归(Linear Regression)原理详解及Python代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线性回归原理详解

        线性回归是一种基本的统计方法,用于预测因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。线性回归模型通过拟合一条直线(在多变量情况下是一条超平面)来最小化预测值与真实值之间的误差。

1. 线性回归模型

        对于单变量线性回归,模型的表达式为:

4736001b906240d9ae7c63ee8a9e102d.png

        其中:

  • y是目标变量。
  • x是特征变量。
  • β0是截距项(偏置)。
  • β1是特征变量的系数。

        对于多变量线性回归,模型的表达式为:

7a34a45745054fe6ba3ed51e68cc001e.png

        其中:

  • y是目标变量。
  • x1,x2,…,xn是多个特征变量。
  • β0是截距项(偏置)。
  • β1,β2,…,βn是各特征变量的系数。

2. 最小二乘法(Ordinary Least Squares, OLS)

        线性回归通过最小二乘法来估计模型参数,即最小化所有预测误差的平方和。对于给定的训练数据集 (xi,yi),目标是找到使得误差平方和最小的 β值。

        误差平方和(损失函数)的公式为:

6fb6e74ddf0841f699893c7315f80cfa.png

        其中 m是样本数量,yi^​ 是第 i个样本的预测值,通过最小化这个损失函数,可以得到最优的模型参数 β。

二、Python代码示例

下面是使用Python实现线性回归的代码示例。我们将使用scikit-learn库来构建和训练线性回归模型,并预测一些数据。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建线性回归模型并进行训练
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)# 进行预测
y_pred = lin_reg.predict(X_test)# 打印模型参数
print("截距(Intercept):", lin_reg.intercept_)
print("系数(Coefficients):", lin_reg.coef_)# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("均方误差(MSE):", mse)
print("决定系数(R^2):", r2)# 绘制回归直线
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression')
plt.legend()
plt.show()

代码解释:

  1. 数据生成:使用numpy生成随机数据集,特征变量 X 和目标变量 y 满足线性关系并添加一些噪声。
  2. 数据划分:将数据集划分为训练集和测试集,比例为80%训练和20%测试。
  3. 模型训练:使用scikit-learnLinearRegression类创建线性回归模型,并在训练集上进行训练。
  4. 模型预测:使用训练好的模型在测试集上进行预测。
  5. 模型评估:计算均方误差(MSE)和决定系数(R²)来评估模型性能。
  6. 结果可视化:绘制实际值和预测值的散点图以及回归直线。

 

这篇关于线性回归(Linear Regression)原理详解及Python代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089792

相关文章

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

springboot2.1.3 hystrix集成及hystrix-dashboard监控详解

《springboot2.1.3hystrix集成及hystrix-dashboard监控详解》Hystrix是Netflix开源的微服务容错工具,通过线程池隔离和熔断机制防止服务崩溃,支持降级、监... 目录Hystrix是Netflix开源技术www.chinasem.cn栈中的又一员猛将Hystrix熔

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报