线性回归(Linear Regression)原理详解及Python代码示例

2024-06-24 09:44

本文主要是介绍线性回归(Linear Regression)原理详解及Python代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线性回归原理详解

        线性回归是一种基本的统计方法,用于预测因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。线性回归模型通过拟合一条直线(在多变量情况下是一条超平面)来最小化预测值与真实值之间的误差。

1. 线性回归模型

        对于单变量线性回归,模型的表达式为:

4736001b906240d9ae7c63ee8a9e102d.png

        其中:

  • y是目标变量。
  • x是特征变量。
  • β0是截距项(偏置)。
  • β1是特征变量的系数。

        对于多变量线性回归,模型的表达式为:

7a34a45745054fe6ba3ed51e68cc001e.png

        其中:

  • y是目标变量。
  • x1,x2,…,xn是多个特征变量。
  • β0是截距项(偏置)。
  • β1,β2,…,βn是各特征变量的系数。

2. 最小二乘法(Ordinary Least Squares, OLS)

        线性回归通过最小二乘法来估计模型参数,即最小化所有预测误差的平方和。对于给定的训练数据集 (xi,yi),目标是找到使得误差平方和最小的 β值。

        误差平方和(损失函数)的公式为:

6fb6e74ddf0841f699893c7315f80cfa.png

        其中 m是样本数量,yi^​ 是第 i个样本的预测值,通过最小化这个损失函数,可以得到最优的模型参数 β。

二、Python代码示例

下面是使用Python实现线性回归的代码示例。我们将使用scikit-learn库来构建和训练线性回归模型,并预测一些数据。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建线性回归模型并进行训练
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)# 进行预测
y_pred = lin_reg.predict(X_test)# 打印模型参数
print("截距(Intercept):", lin_reg.intercept_)
print("系数(Coefficients):", lin_reg.coef_)# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("均方误差(MSE):", mse)
print("决定系数(R^2):", r2)# 绘制回归直线
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression')
plt.legend()
plt.show()

代码解释:

  1. 数据生成:使用numpy生成随机数据集,特征变量 X 和目标变量 y 满足线性关系并添加一些噪声。
  2. 数据划分:将数据集划分为训练集和测试集,比例为80%训练和20%测试。
  3. 模型训练:使用scikit-learnLinearRegression类创建线性回归模型,并在训练集上进行训练。
  4. 模型预测:使用训练好的模型在测试集上进行预测。
  5. 模型评估:计算均方误差(MSE)和决定系数(R²)来评估模型性能。
  6. 结果可视化:绘制实际值和预测值的散点图以及回归直线。

 

这篇关于线性回归(Linear Regression)原理详解及Python代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089792

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1