音视频开发基础知识(1)——图像基本概念

2024-06-24 04:48

本文主要是介绍音视频开发基础知识(1)——图像基本概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

像素

**像素是图像的基本单元,一个个像素就组成了图像。你可以认为像素就是图像中的一个点。**在下面这张图中,你可以看到一个个方块,这些方块就是像素。

在这里插入图片描述

分辨率

图像(或视频)的分辨率是指图像的大小或尺寸。我们一般用像素个数来表示图像的尺寸。比如说一张1920x1080的图像,前者1920指的是该图像的宽度方向上有1920个像素点,而后者1080指的是图像的高 度方向上有1080个像素点。

视频行业常见的分辨率有QCIF (176x144)、CIF (352x288)、D1 (704x576或720x576),还有我们 比较熟悉的360P (640x360)、720P (1280x720)、1080P (1920x1080)、4K (3840x2160)、8K (7680x4320)等。

在这里插入图片描述
1 .像素就只是一个帯有颜色的小块。
2.不能简单地认为分辨率数值越高的图像就越清晰。

原始图像的话,分辨率越高确实会越清晰,但是我们看到的 图像往往是经过后期处理的,比如放大缩小,或者磨皮美颜。经过处理过后的图像,尤其是放大之后的图 像,分辨率很高,但是它并没有很清晰。

因为放大的图像是通过"插值"处理得到的,而插值的像素是使用邻近像素经过插值算法计算得到的, 跟实际相机拍摄的像素是不一样的,相当于"脑补"出来的像素值。

位深

一般来说,我们看到的彩色图像中,都有三个通道,这三个通道就是R、G、B通道,(有的时候还会有Alpha值,代表透明度)
通常R、G、B各占8个位,我们称这种图像是8bit图像,而这个8bit就是位深,位深越大,我们能够表示的颜色值就越多,目前我们大多数情 况下看到的图像以及视频还是8bit位深的。

Stride

Stride也可以称之为跨距,指的是图像存储时内存中每行像素所占用的 空间。跨距为了能够快速读取一行像素,我们一般会对内存中的图像实现内存对齐,比如16字节对齐。

举个例子,我们现在有一张RGB图像,分辨率是1278x720。我们将它存储在内存当中,一行像素需要 1278x3 = 3834个字节,3834除以16无法整除。因此,没有16字节对齐。所以如果需要对齐的话,我们需 要在3834个字节后面填充6个字节,也就是3840个字节做16字节对齐,这样这幅图像的Stride就是3840 了。如下图所示:
在这里插入图片描述
也就是说,每读取一行数据时候需要跳过这多余的6个字节

帧率

FPS(frame per second 每秒钟要多少帧画面)
帧率:影响画面流畅度,与画面流畅度成正比:
帧率越大,画面越流畅;
帧率越小,画面越有跳动感。

码率

编码器每秒编出的数据大小,单位是kbps,比如800kbps代表编码器每秒产生800kb(或100KB)的数据。

在这里插入图片描述

RGB

RGB中的值不一定是按R-G-B顺序排列的,也可能是G-B-R顺序
在这里插入图片描述

YUV

YUV 颜色编码采用的是 明亮度 和 色度 来指定像素的颜色。
其中,Y 表示明亮度(Luminance、Luma),而 U 和 V 表示色度(Chrominance、Chroma)。
YUV主要分为YUV 4:4:4,YUV 4:2:2,YUV 4:2:0几种常用类型。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.YUV 4:4:4, 每一个Y对应一组UV。
2.YUV 4:2:2,每两个Y共用一组UV。
3.YUV 4:2:0,每四个Y共用一组UV。

1.YUV 4:4:4采样

1个像素存储示意图
在这里插入图片描述
举个例子 :
假如图像像素为:[Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3]
那么采样的码流为:Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3
最后映射出的像素点依旧为 [Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3]

这种采样方式的图像和 RGB 颜色模型的图像大小是一样,并没有达到节省带宽的目的

2.YUV 4:2:2 采样

有4种类型
1)YU16 (或者称为I422、YUV422P),Planar格式
在这里插入图片描述

2)YV16 (YUV422P),Planar格式
在这里插入图片描述
3)NV16(YUV422SP),Packed格式
在这里插入图片描述

4)NV61(YUV422SP),Packed格式
在这里插入图片描述
举个例子 :
假如图像像素为:[Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3]
那么采样的码流为:Y0 U0 Y1 V1 Y2 U2 Y3 V3
其中,每采样过一个像素点,都会采样其 Y 分量,而 U、V 分量就会间隔一个采集一个。
最后映射出的像素点为 [Y0 U0 V1]、[Y1 U0 V1]、[Y2 U2 V3]、[Y3 U2 V3]

一张 1280 * 720 大小的图片,在 YUV 4:2:2 采样时的大小为:

(1280 * 720 * 8 + 1280 * 720 * 0.5 * 8 * 2)/ 8 / 1024 / 1024 = 1.76 MB 。

3.YUV 4:2:0

1)YU12(I420,YUV420P),Planar格式
在这里插入图片描述
2)YV12(YUV420P),Planar格式
在这里插入图片描述
3)NV12(YUV420SP),Packed格式
在这里插入图片描述
4)NV21(YUV420SP),Packed格式
在这里插入图片描述
举个例子 :
假设图像像素为:
[Y0 U0 V0]、[Y1 U1 V1]、 [Y2 U2 V2]、 [Y3 U3 V3]
[Y5 U5 V5]、[Y6 U6 V6]、 [Y7 U7 V7] 、[Y8 U8 V8]
那么采样的码流为:Y0 U0 Y1 Y2 U2 Y3 Y5 V5 Y6 Y7 V7 Y8
其中,每采样过一个像素点,都会采样其 Y 分量,而 U、V 分量就会间隔一行按照 2 : 1 进行采样。
最后映射出的像素点为:
[Y0 U0 V5]、[Y1 U0 V5]、[Y2 U2 V7]、[Y3 U2 V7]
[Y5 U0 V5]、[Y6 U0 V5]、[Y7 U2 V7]、[Y8 U2 V7]

一张 1280 * 720 大小的图片,在 YUV 4:2:0 采样时的大小为:

(1280 * 720 * 8 + 1280 * 720 * 0.25 * 8 * 2)/ 8 / 1024 / 1024 = 1.32 MB 。

YUV 存储格式

YUV 的存储格式,有两种:
planar 平面格式
指先连续存储所有像素点的 Y 分量,然后存储 U 分量,最后是 V 分量。
packed 打包模式
指每个像素点的 Y、U、V 分量是连续交替存储的。
在这里插入图片描述

RGB 到 YUV 的转换

对于图像显示器来说,它是通过 RGB 模型来显示图像的,而在传输图像数据时又是使用 YUV 模型,这是因为 YUV 模型可以节省带宽。因此就需要采集图像时将 RGB 模型转换到 YUV 模型,显示时再将 YUV 模型转换为 RGB 模型。
RGB 到 YUV 的转换,就是将图像所有像素点的 R、G、B 分量转换到 Y、U、V 分量。
有如下公式进行转换:
在这里插入图片描述
更多音视频项目Demo代码详见我的GitHub:https://github.com/king-ma1993

这篇关于音视频开发基础知识(1)——图像基本概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089209

相关文章

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10