【Python机器学习】NMF——将NMF应用于人脸图像

2024-06-24 03:20

本文主要是介绍【Python机器学习】NMF——将NMF应用于人脸图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将NMF应用于之前用过的Wild数据集中的Labeled Faces。NMF的主要参数是我们想要提取的分量个数。通常来说,这个数字要小于输入特征的个数(否则的话,将每个像素作为单独的分量就可以对数据进行解释)。

首先,观察分类个数如何影响NMF重建数据的好坏:

import mglearn.plots
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_lfw_peoplepeople=fetch_lfw_people(data_home = "C:\\Users\\86185\\Downloads\\",min_faces_per_person=20,resize=.7)
image_shape=people.images[0].shape
mask=np.zeros(people.target.shape,dtype=np.bool_)
for target in np.unique(people.target):mask[np.where(people.target==target)[0][:50]]=1
X_people=people.data[mask]
y_people=people.target[mask]
X_train,X_test,y_train,y_test=train_test_split(X_people,y_people,stratify=y_people,random_state=0)mglearn.plots.plot_nmf_faces(X_train,X_test,image_shape)plt.show()

反向变换的数据质量与使用PCA时类似,但要稍差一些。这是符合预期的,因为PCA找到的是重建的最佳方向。NMF通常并不用于对数据进行重建或编码,而是用于在数据中寻找有趣的模式。

尝试仅提取一部分分量,初步观察一下数据:


from sklearn.decomposition import NMFnmf=NMF(n_components=15,random_state=0)
nmf.fit(X_train)
X_train_nmf=nmf.transform(X_train)
X_test_nmf=nmf.transform(X_test)fig,axes=plt.subplots(3,5,figsize=(15,12),subplot_kw={'xticks':(),'yticks':()})for i,(component,ax) in enumerate(zip(nmf.components_,axes.ravel())):ax.imshow(component.reshape(image_shape))ax.set_title('{}.component'.format(i))
plt.show()

这些分量都是正的,因此比PCA分量更像人脸模型。例如,上图分量9显示了稍微向右转动的人脸,分量12显示了稍微向左的人脸。

再来看一下一些分量特别大的图像:


compn=9
inds=np.argsort(X_train_nmf[:,compn])[::-1]
fig,axes=plt.subplots(2,5,figsize=(15,8),subplot_kw={'xticks':(),'yticks':()})
for i,(ind,ax) in enumerate(zip(inds,axes.ravel())):ax.imshow(X_train[ind].reshape(image_shape))
plt.show()compn=12
inds=np.argsort(X_train_nmf[:,compn])[::-1]
fig,axes=plt.subplots(2,5,figsize=(15,8),subplot_kw={'xticks':(),'yticks':()})
for i,(ind,ax) in enumerate(zip(inds,axes.ravel())):ax.imshow(X_train[ind].reshape(image_shape))
plt.show()

正如所料,分量9系数较大的都是向右看的人脸,分量12系数较大的人脸都是向左看。提取这样的模式最适合与具有叠加结构的数据,包括音频,基因表达和文本数据。

这篇关于【Python机器学习】NMF——将NMF应用于人脸图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089036

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3