【PL理论深化】(3) MI 归纳法:归纳假设 (IH) | 结构归纳法 | 归纳假设的证明

2024-06-24 00:44

本文主要是介绍【PL理论深化】(3) MI 归纳法:归纳假设 (IH) | 结构归纳法 | 归纳假设的证明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 💬 写在前面:所有编程语言都是通过归纳法定义的。因此,虽然编程语言本身是有限的,但用该语言编写的程序数量是没有限制的,本章将学习编程语言研究中最基本的归纳法。本章我们继续讲解归纳法,介绍归纳假设和结构性归纳法。

目录

0x00 归纳假设 (IH) 和结构归纳法

0x01 归纳假设的证明


0x00 归纳假设 (IH) 和结构归纳法

归纳法是一种用于证明归纳定义的集合中的元素所具有性质的方法。

假设存在一个通过归纳法定义的集合 S,为证明集合 S 中的所有元素 x 都满足某个性质 P(x)

需证明以下两点:

① 若 x 是 S 的基本元素,则直接证明 P(x) 。

② 若 x 是利用 S 中的其他元素 y_1, y_2,..., y_n 归纳定义出来的,那么:

P(y_1),P(y_2),...P(y_n)

并假设它们都成立,然后利用这些假设来证明 P(x) 成立。

.

在这种情况下,P(y_1),P(y_2),...P(y_n) 被称为 归纳假设 (induction hypothesis, IH) 。

这种证明方法称为 结构归纳法 (structural induction)。

当集合 S 是自然数集时,这种方法就称为 数学归纳法 (MI),是结构归纳法的一种特殊情况。

0x01 归纳假设的证明

举个例子,假设集合 S 是通过以下推理规则定义的集合:

让我们用结构归纳法来证明这样定义的集合 S 中的所有元素都能被 3 整除。

首先证明基本元素的情况。如果 x 等于 3,那么显然 x 能被 3 整除。

接下来,我们证明归纳生成的元素的情况,假设元素是按照以下规则生成的:

归纳假设 (induction hypothesis, I.H.) 如下:

x 和 y 能被 3 整除

根据归纳假设,设 x = 3k_1,\, y = 3k_2,需要证明的是:

x + y 能被 3 整除

证明如下:

x+y=3k_1+3k_2   ··· 归纳假设

=3(k_1+k_2)

.

我们再举个例子,将集合 S 定义为通过以下推理规则所定义的集合:

并且当 x\in S 时,设 l(x) 和 r(x) 分别表示 x 中包含的左括号和右括号的数量。

它们如下通过归纳法定义:

现在,我们来证明对于集合 S 的所有元素 x,左括号和有货好的数量是对等的。

我们可以如下表示将要证明的命题:

对于  \forall x\in Sl(x)=r(x)

可以通过 结构归纳法 进行如下证明:

基础元素是 x=0,根据函数 l 和 r 的定义,成立 l(x)=1=r(x)

归纳生成的情况有以下两种:

.

规则一 的情况下,归纳假设如下:

l(x)=r(x)

需要证明的是 l\big(\, (x)\, \big)=r\big(\, (x)\, \big),证明如下:

.

规则二 的情况下,归纳假设如下:

l(x)=r(x),\, \, \, \, \, l(y)=r(y)

需要证明的是 l(xy)=r(xy),证明方式如下:

📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2024.6.23
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

- R. Neapolitan, Foundations of Algorithms (5th ed.), Jones & Bartlett, 2015.

- T. Cormen《算法导论》(第三版),麻省理工学院出版社,2009年。

- T. Roughgarden, Algorithms Illuminated, Part 1~3, Soundlikeyourself Publishing, 2018.

- J. Kleinberg&E. Tardos, Algorithm Design, Addison Wesley, 2005.

- R. Sedgewick&K. Wayne,《算法》(第四版),Addison-Wesley,2011

- S. Dasgupta,《算法》,McGraw-Hill教育出版社,2006。

- S. Baase&A. Van Gelder, Computer Algorithms: 设计与分析简介》,Addison Wesley,2000。

- E. Horowitz,《C语言中的数据结构基础》,计算机科学出版社,1993

- S. Skiena, The Algorithm Design Manual (2nd ed.), Springer, 2008.

- A. Aho, J. Hopcroft, and J. Ullman, Design and Analysis of Algorithms, Addison-Wesley, 1974.

- M. Weiss, Data Structure and Algorithm Analysis in C (2nd ed.), Pearson, 1997.

- A. Levitin, Introduction to the Design and Analysis of Algorithms, Addison Wesley, 2003. - A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.

- E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms/C++, Computer Science Press, 1997.

- R. Sedgewick, Algorithms in C: 第1-4部分(第三版),Addison-Wesley,1998

- R. Sedgewick,《C语言中的算法》。第5部分(第3版),Addison-Wesley,2002

这篇关于【PL理论深化】(3) MI 归纳法:归纳假设 (IH) | 结构归纳法 | 归纳假设的证明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088728

相关文章

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

如何使用Maven创建web目录结构

《如何使用Maven创建web目录结构》:本文主要介绍如何使用Maven创建web目录结构的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录创建web工程第一步第二步第三步第四步第五步第六步第七步总结创建web工程第一步js通过Maven骨架创pytho

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa