面试:关于word2vec的相关知识点Hierarchical Softmax和NegativeSampling

本文主要是介绍面试:关于word2vec的相关知识点Hierarchical Softmax和NegativeSampling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、为什么需要Hierarchical Softmax和Negative Sampling

从输入层到隐含层需要一个维度为N×K的权重矩阵,从隐含层到输出层又需要一个维度为K×N的权重矩阵,学习权重可以用反向传播算法实现,每次迭代时将权重沿梯度更优的方向进行一小步更新。但是由于Softmax激活函数中存在归一化项的缘故,推导出来的迭代公式需要对词汇表中的所有单词进行遍历,使得每次迭代过程非常缓慢,由此产生了Hierarchical Softmax和Negative Sampling两种改进方法。

2.Hierarchical Softmax

层次softmax基本思想是将复杂的归一化概率分解为一系列条件概率乘积的形式: 

每一层条件概率对应一个二分类问题,通过逻辑回归函数可以去拟合。对v个词的概率归一化问题就转化成了对logv个词的概率拟合问题。

Hierarchical softmax通过构造一棵二叉树将目标概率的计算复杂度从最初的V降低到了logV的量级。但是却增加了词与词之间的耦合性。比如一个word出现的条件概率的变化会影响到其路径上所有非叶子节点的概率变化。间接地对其他word出现的条件概率带来影响。

哈夫曼树是带权路径和最短的最优二叉树,所以通过对词表中的词进行树构造,可以生成一个哈夫曼树,越接近根节点的词,其词频是越高的,我们需要优先更新,越向下,词频越低,更新频率也小一点,通过这样的方式就可以实现训练速度的加快。
具体来说,CBOW是上下文预测中间词,我们将上下文初始化的词嵌入进行求和得到一个X表示,哈夫曼树的每一个节点都是一个逻辑回归判断,从根节点开始,向下判断,直到落到目标节点上,此时把已走的路径的LR值相乘,即得到此时的条件概率,而训练的目标就是使得整个条件概率达到最大。

3.NegativeSampling

对于词袋大小V而言,如果V非常大,即使是构建哈夫曼树,复杂度也会很高,所以提出使用负采样。使用负采样的时候,可以明显感觉到训练速度快于层次softmax,而且不需要构建复杂的哈弗曼树。

什么是负样本呢?
  例如在CBOW中,我们是知道了C o n t e x t ( w ) Context(w)Context(w),然后来预测单词w ,那么这个时候,相对于C o n t e x t ( w ) Context(w)Context(w),我们提供一组结果,这些结果中包含正确的解w ,剩下的都是错误的解,那么w ww就是正样本,剩下的解就是负样本。

也就是说,正常情况下的预测结果是包括大量正样本和负样本的,但是由于词表V非常大,所以我们每次只随机采样一定数量个负样本参与到损失函数的计算中。

4.Hierarchical Softmax和Negative Sampling作用方面

负采样进行时,更倾向于采样高词频负样本,其对高词频更友好;
层级softmax虽然越接近root节点,词频会越高,但不代表其不对低频词进行更新,只是这样设计的层级softmax训练速度会加快,所以相比负采样策略,其对低词频更加友好。

CBOW上下文预测中间词时,是去尽可能的找到最为合适的中间词,很大可能性会对低词频词进行忽略;而SG中间词预测上下文时,低词频词同样会被模型考虑进去,这相当于给了低频词更多的学习机会,所以其对低频词更加友好。

这篇关于面试:关于word2vec的相关知识点Hierarchical Softmax和NegativeSampling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088662

相关文章

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException: org.junit.Test问题

《解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException:org.junit.Test问题》:本文主要介绍解决tomcat启动时报Junit相... 目录tomcat启动时报Junit相关错误Java.lang.ClassNotFoundException

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

前端知识点之Javascript选择输入框confirm用法

《前端知识点之Javascript选择输入框confirm用法》:本文主要介绍JavaScript中的confirm方法的基本用法、功能特点、注意事项及常见用途,文中通过代码介绍的非常详细,对大家... 目录1. 基本用法2. 功能特点①阻塞行为:confirm 对话框会阻塞脚本的执行,直到用户作出选择。②

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li