Scrapy实战-爬取豆瓣漫画

2024-06-23 21:32

本文主要是介绍Scrapy实战-爬取豆瓣漫画,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景知识

(一)什么是Scrapy呢?Python上优秀的爬虫框架。什么是爬虫?可以看我的心得感悟,也可以自行谷歌百度。

(二)建议看下初识Scrapy的事前准备安装Scrapy。

(三)Selectors根据XPath和CSS表达式从网页中选择数据。XPath和CSS表达式是什么东西,我们不用太过于纠结,只需要知道可以使用它们在网页中选择数据。用法:利用chrome去复制所需数据的位置信息。当然进阶的话可以看这里

2013053-1e33662ff3e66f9b.png
右击

2013053-157aee1bb62f4806.png
拷贝

基本用法与说明:

  • response.selector.xpath('//title/text()')##用xpath选取了title的文字内容
  • response.selector.css('title::text') ##用css选取了title的文字内容
    由于selector.xpath和selector.css使用比较普遍,所以专门定义了xpath和css,所以上面也可以写成:
  • response.xpath('//title/text()')
  • response.css('title::text')
    由于<code>.xpath</code>和<code>.css</code>返回的都是<class 'scrapy.selector.unified.SelectorList'>,因此可以这样写<code>response.css('img').xpath('@src').extract()</code>
  • 提取全部内容: .extract(),获得是一个列表
  • 提取第一个:.extract_first(),获得是一个字符串
  • 选取链接: .response.css('base::attr(href)').response.xpath('//base/@href')

正式开始

1. 新建工程 scrapy startproject tutorial

2. 创建爬虫 scrapy genspider -t basic douban douban.com

上面两步会创建如下的目录结构:

2013053-b8b5467c7c407855.png
Scrapy目录树

简单说下每一个文件的作用,虽然在初识Scrapy已经说过了。

  1. spiders文件夹存放你的爬虫,
  2. items.py用于定义存放网页数据的item。
  3. middlewares.py是后加的,目前不需要
  4. pipelines.py 用于处理从spiders返回的item,比如说清洗、存储。
  5. settings.py是全局设定,比如说接下来提到的DEFAULT_REQUEST_HEADERA和USER_AGENT都在这里。

3. 修改settings.py

因为Scrapy非常诚实,爬取网页的时候会表明自己是一只爬虫,但是豆瓣不给这些表明身份的爬虫活路。所以我们只能换个身份。

第一步:chrome用快捷键F12打开开发者工具,选择Network一栏,可能需要F5刷新页面:


2013053-c9bd5db291de06f6.png
开发者工具之Network

第二步:在上图红框部分随机选取一个,会出现下图:

2013053-c2caaf8c355e5ee9.png
浏览器信息

我们主要需要的是里面红框的Request Headers的信息。

第三步:在settings.py中修改DEFAULT_REQUEST_HEADERA和USER_AGENT。

2013053-b80201dacbb91bf5.png
settings.py

里面的USER_AGENT填写浏览器图中的User-Agent对应信息,DEFAULT_REQUEST_HEADERA里的信息根据字典的写法,从浏览器信息图中依次对应对应填上去。
PS:
顺便启用DOWNLOAD_DELAY=3减慢爬取速度,不要给别人的服务器增加太多压力。
此外启用 ITEM_PIPELINES = { 'tutorial.pipelines.DoubanPipeline': 300,}用于处理数据

4. 用爬虫的视角看网页,

在命令行中输入scrapy shell https://movie.douban.com/chart 这时候会进入scrapy版的ipython,输入view(response)就可以查看网页。

5. 定义要爬取的内容

在items.py中作如下修改

import scrapy
class DoubanItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()title = scrapy.Field()link = scrapy.Field()info = scrapy.Field()desc = scrapy.Field()

6. 单页逻辑

爬取多个网页前,我们首先得要成功提取一个网页的信息。在spiders/douban.py做如下修改
# -- coding: utf-8 --
import scrapy
from scrapy.http import Request
from ..items import DoubanItem

class DoubanSpider(scrapy.Spider):name = "douban"allowed_domains = ["douban.com"]start_urls = ('https://book.douban.com/tag/%E6%BC%AB%E7%94%BB?start=0&type=T',)def parse(self, response):item = DoubanItem()for sel in response.css('#subject_list > ul > li > div.info'):item['title']= sel.css('h2 > a::text').extract_first()item['link'] = sel.css('h2 > a::attr(href)').extract_first()item['info'] = sel.css('div.pub::text').extract_first()item['desc'] = sel.css('p::text').extract_first()yield item

大致的爬虫就完成了。用scrapy crawl douban开始工作。由于scrap构建在python2.7上,所以对中文支持不太好,在命令行中会以unicode编码的方式显示,所以在shell上看到一堆不认识的\xxx也不要太担心。

7.数据储存

为了方便之后调用数据,我们需要用pipelines.py将爬取的数据存储在固定的文件中。可以用json等格式储存,也可以存放在数据库中。网页爬取数据往往不太规范,建议使用mongodb(NoSQL)。

import json
import codecs
Import pymongo #python中用来操作mongodb的库
##存储为json格式
class DoubanPipeline(object):def __init__(self):self.file = codecs.open('douban_movie.json','wb',encoding='utf-8')def process_item(self, item, spider):line = json.dumps(dict(item)) + '\n'self.file.write(line.decode("unicode_escape"))return itemclass MongoPipeline(object):collection_name = 'douban_cartoon' # mongo的collection相当于sql的tabledef __init__(self, mongo_uri,mongo_db):self.mongo_uri = mongo_uriself.mongo_db = mongo_db## 配置mongo@classmethoddef from_crawler(cls, crawler):return cls(mongo_uri=crawler.settings.get('MONGO_URI'), #从settings中mongo的urimongo_db=crawler.settings.get('MONGO_DATABASE','douban') #从settings中获取数据库,默认为douban)# 在spider工作开始前连接mongodbdef open_spider(self, spider):self.client = pymongo.MongoClient(self.mongo_uri)self.db = self.client[self.mongo_db]## 在spider工作结束后关闭连接def close_spider(self, spider):self.client.close()## 在mongodb中插入数据def process_item(self, item, spider):# for i in item:self.db[self.collection_name].insert(dict(item))return item

运行后就可以在项目所在目录找到douban_movie.json,mongodb的话需要自己去查询了。

多页逻辑(一)

我们需要在这一页获取下一个的链接,然后重新调用parse函数爬取这个链接。

     def parse(self, response):.....## 获取下一个的链接href = response.xpath('//*[@id="subject_list"]/div[2]/span[4]/a')url = u'https://book.douban.com'+ href.css('a::attr(href)').extract_first()yield Request(url, callback=self.parse)

多页逻辑(二)

我们还可以通过Scrapy提供的CrawlSpider完成多页爬取。CrawlSpider比Spider多了一步即设置Rule,具体可以看我的[Scrapy基础之详解Spider]的CrawlSpider。

第一步shell试错

为了确保LinkExtractor能提取到正确的链接,我们需要在shell中进行试验。

scrapy shell https://book.douban.com/tag/漫画from scrapy.linkextractors import LinkExtractor ##导入LinkExtractoritem=LinkExtractor(allow='/tag/漫画',restrict_xpaths=('//*[@id="subject_list"]/div[2]/span/a')).extract_links(response) ##需要反复修改
第二步修改爬虫

修改后的爬虫如下:
# -- coding: utf-8 --
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from tutorial.items import DoubanItem

class ManhuaSpider(CrawlSpider):name = 'manhua'allowed_domains = ['book.douban.com']start_urls = ['https://book.douban.com/tag/漫画']rules = (Rule(LinkExtractor(allow=r'/tag/漫画',restrict_xpaths=('//*[@id="subject_list"]/div[2]/span/a')),callback='parse_item',follow=True),)def parse_item(self, response):item = DoubanItem()for sel in response.css('#subject_list > ul > li > div.info'):item['title']= sel.css('h2 > a::text').extract_first()item['link'] = sel.css('h2 > a::attr(href)').extract_first()item['info'] = sel.css('div.pub::text').extract_first()item['desc'] = sel.css('p::text').extract_first()yield item

运行结果和多页逻辑(一)的一致。


进一步,你可以看再识Scrapy-下载豆瓣图书封面,在这个的基础上增加图片下载功能。
如果怕被ban,可以看再识Scrapy-防ban策略


本文参考了Andrew_liu的Python爬虫(六)--Scrapy框架学习,
scrapy研究探索(二)——爬w3school.com.cn,以及最重要的官方文档。


写在最后:
网络上有那么多的Scrapy的教程,为啥我还要写一个呢?因为我觉得真正学会用自己语言去表达一门技术的时候,才算入门了。
还有写出来的东西才能让别人发现自己的不足,希望各位大大批评指正。
我的源代码托管在GitHub上,有需要的话可以去看

这篇关于Scrapy实战-爬取豆瓣漫画的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088330

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx