「JCVI教程」如何绘制CNS级别的共线性图(上)

2024-06-23 20:32

本文主要是介绍「JCVI教程」如何绘制CNS级别的共线性图(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本教程借鉴https://github.com/tanghaibao/jcvi/wiki/MCscan-(Python-version).

我们先从http://plants.ensembl.org/index.html选择两个物种做分析, 这里选择的就是前两个物种,也就是拟南芥和水稻(得亏没有小麦和玉米)

2013053-059b230b0eb3a708.png
选择物种

我们下载它的GFF文件,cdna序列和蛋白序列

#Athaliana
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/arabidopsis_thaliana/pep/Arabidopsis_thaliana.TAIR10.pep.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.44.gff3.gz
#Osativa
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/oryza_sativa/cdna/Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/oryza_sativa/pep/Oryza_sativa.IRGSP-1.0.pep.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/gff3/oryza_sativa/Oryza_sativa.IRGSP-1.0.44.gff3.gz

保证要有6个文件以便下游分析

$ ls
Arabidopsis_thaliana.TAIR10.44.gff3.gz      Arabidopsis_thaliana.TAIR10.pep.all.fa.gz  Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz
Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz  Oryza_sativa.IRGSP-1.0.44.gff3.gz          Oryza_sativa.IRGSP-1.0.pep.all.fa.gz

我们分析只需要用到每个基因最长的转录本就行,之前我用的是自己写的脚本,但其实我发现jcvi其实可以做到这件事情

先将gff转成bed格式,

python -m jcvi.formats.gff bed --type=mRNA --key=transcript_id Arabidopsis_thaliana.TAIR10.44.gff3.gz > ath.bed
python -m jcvi.formats.gff bed --type=mRNA --key=transcript_id Oryza_sativa.IRGSP-1.0.44.gff3.gz > osa.bed

然后将bed进行去重复

python -m jcvi.formats.bed uniq ath.bed
python -m jcvi.formats.bed uniq osa.bed

最后我们得到了ath.uniq.bedosa.uniq.bed, 根据bed文件第4列就可以用于提取cds序列和蛋白序列。

# Athaliana
seqkit grep -f <(cut -f 4 ath.uniq.bed ) Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz | seqkit seq -i > ath.cds
seqkit grep -f <(cut -f 4 ath.uniq.bed ) Arabidopsis_thaliana.TAIR10.pep.all.fa.gz | seqkit seq -i > ath.pep 
# Osativa
seqkit grep -f <(cut -f 4 osa.uniq.bed )  Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz | seqkit seq -i  > osa.cds
seqkit grep -f <(cut -f 4 osa.uniq.bed ) Oryza_sativa.IRGSP-1.0.pep.all.fa.gz | seqkit seq -i  > osa.pep

这里用到的seqkit建议学习,非常好用

下面使用python -m jcvi.compara.catalog ortholog进行共线性分析,这是一个非常行云流水的过程(除非你报错)

新建一个文件夹,方便在报错的时候,把全部都给删了,

mkdir -p cds && cd cds
ln -s ../ath.cds ath.cds
ln -s ../ath.uniq.bed ath.bed
ln -s ../osa.cds osa.cds
ln -s ../osa.uniq.bed osa.bed

运行代码

python -m jcvi.compara.catalog ortholog --no_strip_names ath osa

输出结果如下

$ ls ath.osa.*
ath.osa.anchors  ath.osa.last  ath.osa.last.filtered  ath.osa.lifted.anchors  ath.osa.pdf

其中我们最感兴趣都是pdf结果,不出意外没啥共线性。

2013053-56088901d7e91371.png
共线性结果

我们还可以用蛋白序列做共线性分析

# 在之前输出cds,pep都文件夹操作
mkdir -p pep && cd pep
ln -s ../ath.pep ath.pep
ln -s ../ath.uniq.bed ath.bed
ln -s ../osa.pep osa.pep
ln -s ../osa.uniq.bed osa.bed

运行代码

python -m jcvi.compara.catalog ortholog --dbtype prot --no_strip_names ath osa

我之前以为他不可以基于蛋白序列分析,幸亏有人提醒。

2013053-9baff92ee2bb1c54.png
蛋白共线性

你会发现这是一个自动化分析流程,我们只是提供了4个文件,它就完成了一些列事情。它生成都文件里处理PDF外,其他还有啥用呢?

  • ath.osa.last: 基于LAST的比对结果
  • ath.osa.last.filtered: LAST的比对结果过滤串联重复和低分比对
  • ath.osa.anchors: 高质量的共线性区块
  • ath.osa.lifted.anchors:增加了额外的锚点,形成最终的共线性区块

anchors文件特别有用,之后会写一篇介绍如何利用他进行可视化,这里介绍它的格式。

###
AT1G28395.5     Os01t0238800-02 66
AT1G28440.1     Os01t0239700-02 1360
AT1G28480.1     Os01t0241400-01 136
AT1G28510.1     Os01t0242300-01 241
###
AT1G11100.3     Os01t0779400-01 943
AT1G11125.1     Os01t0779800-01 52
AT1G11160.2     Os01t0780400-02 535
AT1G11180.1     Os01t0780500-01 483
AT1G11330.2     Os01t0784700-00 742
AT1G11360.1     Os01t0783500-01 305
AT1G11540.2     Os01t0786800-01 422
AT1G11570.3     Os01t0788200-01 162
AT1G11580.2     Os01t0788400-01 550
AT1G11630.1     Os01t0793200-01 321

每个共线性区块以###进行分隔, 第一列是检索的基因,第二列是被检索的基因,第三列则是两个序列的BLAST的bit score,值越大可靠性越高。


用水稻和拟南芥进行了比较之后,发现后面基本上也没啥可以分析了。因此下面基于「JCVI教程」如何基于物种的CDS的blast结果绘制点图(dotplot)得到的cds和bed文件进行分析。

之前已经得到了如下四个文件

ls ???.???
aly.bed  aly.cds  ath.bed  ath.cds

所以我们只要运行

python -m jcvi.compara.catalog ortholog --no_strip_names aly ath

就得到了一个非常好看的点图

2013053-23a7b0a5da7fec0a.png
点图

我们可以发现,都作为Arabidopsis属的两个物种,他们之间存在很高的同源性,并且同源区比例是1:1,

2013053-acf610eff4eff64d.png
共线区域比例

这其实和2011年的Nature Genetics上Alyrata的文章的结果是相似的,只不过他不是用点图进行展示

2013053-a4fd011cbd93bf80.png
Nature Genetics

我们也可以用JCVI的画图模块实现这种效果,只不过还需要一点额外操作,创建如下三个文件

  • seqids: 需要展现哪些序列
  • layout: 不同物种的在图上的位置
  • .simple: 从.anchors文件创建的更简化格式

第一步,创建.simple文件

python -m jcvi.compara.synteny screen --minspan=30 --simple aly.ath.anchors aly.ath.anchors.new 

第二步, 创建seqid文件,非常简单,就是需要展示的scaffold或染色体的编号

scaffold_1,scaffold_2,scaffold_3,scaffold_4,scaffold_5,scaffold_6,scaffold_7,scaffold_8
Chr1,Chr2,Chr3,Chr4,Chr5

第二步,创建layout文件,用于设置绘制的一些选项。

# y, xstart, xend, rotation, color, label, va,  bed.6,     .2,    .8,       0,      , Alyrata, top, aly.bed.4,     .2,    .8,       0,      , Athaliana, top, ath.bed
# edges
e, 0, 1, aly.ath.anchors.simple

注意, #edges下的每一行开头都不能有空格

最后运行下面的命令,会得到一个karyotype.pdf

python -m jcvi.graphics.karyotype seqids layout
2013053-f06c776e0a79fffe.png
染色体共线性图

如何让这个图垂直呢?(导入AI里就好了)

版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

2013053-27327d268ceff40d.png
扫码即刻交流

这篇关于「JCVI教程」如何绘制CNS级别的共线性图(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088200

相关文章

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

spring AMQP代码生成rabbitmq的exchange and queue教程

《springAMQP代码生成rabbitmq的exchangeandqueue教程》使用SpringAMQP代码直接创建RabbitMQexchange和queue,并确保绑定关系自动成立,简... 目录spring AMQP代码生成rabbitmq的exchange and 编程queue执行结果总结s