python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线)

本文主要是介绍python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

移动平均线是最常见的技术指标,它能够去除时间序列的短期波动,使得数据变得平滑,从而可以方便看出序列的趋势特征。常见的移动平均线有简单移动平均线,加权移动平均线,指数移动平均线。

一. 简单移动平均(SMA)

简单移动平均线(Simple Moving Average),很好理解,就是将过去n个窗口内的价格进行算术平均
S M A t ( n ) = 1 n ( X t − n + 1 + X t − n + 2 + . . . + X t ) SMA_t(n) = \frac{1}{n}(X_{t-n+1} + X_{t-n+2} + ... + X_t) SMAt(n)=n1(Xtn+1+Xtn+2+...+Xt)

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的简单移动平均线。

import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')data['SMA10'] = data['close'].rolling(10).mean()data['SMA20'] = data['close'].rolling(20).mean()fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['SMA10'], label='SMA10')ax.plot(data.index, data['SMA20'], label='SMA20')ax.legend()plt.show()

在这里插入图片描述

二. 加权移动平均(WMA)

加权移动平均(Weighted Moving Average)在计算平均值时,对最近的数据赋予的权重比历史数据的权重要大。
W M A ( n ) t = n X t + ( n − 1 ) X t − 1 + . . . + 2 X t − n + 2 + X t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA(n)_t = \frac{nX_t + (n-1)X_{t-1} + ... + 2X_{t-n+2} + X_{t-n+1}}{n + (n - 1) + ...+ 2 + 1} WMA(n)t=n+(n1)+...+2+1nXt+(n1)Xt1+...+2Xtn+2+Xtn+1

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的加权移动平均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')n = 10weights = np.array(range(1, n + 1))weights_sum = np.sum(weights)data['WMA10'] = data['close'].rolling(window=n, min_periods=n).apply(lambda x: np.sum(x * weights) / weights_sum)fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['WMA10'], label='WMA10')ax.legend()plt.show()

在这里插入图片描述

三. 指数移动平均(EMA)

指数移动平均(Exponential Moving Average)跟加权移动平均类似,只是它对最近的数据赋予了更高的权重。
E M A t = α X t + ( 1 − α ) E M A t − 1 EMA_t = {\alpha}X_t + (1-\alpha)EMA_{t-1} EMAt=αXt+(1α)EMAt1
α \alpha α一般取 2 / ( n + 1 ) 2/(n + 1) 2/(n+1), n n n为数据序列长度,pandas中计算EMA一般可以使用ewm方法。

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的指数移动平均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')[['date', 'close']]data['EMA10'] = data['close'].ewm(span=10, adjust=True).mean()fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['EMA10'], label='EMA10')ax.legend()plt.show()

在这里插入图片描述

四. 对比三种均线
1. 三种均线的权重对比

从权重思维来看,三种方法都可以认为是加权平均。

  • SMA:权重系数一致
  • WMA:权重系数随时间间隔线性递减
  • EMA:权重系数随时间间隔指数递减

下面通过程序展示三种均线的权重系数的递减情况

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltif __name__ == '__main__':n = 30# 简单移动平均权重weight_sma = np.ones(n)# 加权移动平均weights_wma = range(1, n + 1)weights_wma /= np.sum(weights_wma)weights_wma = weights_wma[::-1]# 指数移动平均alpha = 2 / (n + 1)t = np.array(range(0, n))weights_ema = alpha * (1 - alpha) ** tdf = pd.DataFrame({"SMA30-Weights": weight_sma, "WMA30-Weights": weights_wma, "EMA30-Weights": weights_ema})ax = df.plot.bar(subplots=True, figsize=(16, 6), title=['', '', ''])plt.show()

在这里插入图片描述
从上图中的权重系数随时间间隔衰减情况可以看出,指数移动平均系数衰减较快,也因此一般也能更快的发现趋势的变化。

2. 三种均线可视化

下面展示贵州茅台从2018.6.1到2019.12.31收盘价的三种移动均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return result# 简单移动平均
def sma_demo(data, n):data['SMA20'] = data['close'].rolling(window=n, min_periods=n).mean()return data# 加权移动平均
def wma_demo(data, n):weights = np.array(range(1, n + 1))weights_sum = np.sum(weights)data['WMA20'] = data['close'].rolling(window = n, min_periods=n).apply(lambda x: np.sum(x * weights) / weights_sum)return data# 指数平均
def ema_demo(data, n):data['EMA20'] = data['close'].ewm(span=n, min_periods=n, adjust=True).mean()return dataif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')[['close']]data = sma_demo(data, 20)data = wma_demo(data, 20)data = ema_demo(data, 20)fig = plt.figure(figsize=(30, 20))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['SMA20'], label='SMA20')ax.plot(data.index, data['WMA20'], label='WMA20')ax.plot(data.index, data['EMA20'], label='EMA20')ax.legend()plt.show()

运行结果:
在这里插入图片描述

这篇关于python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1088161

相关文章

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder