动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

27含并行连结的网络GoogLeNet

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
import liliPytorch as lp
import matplotlib.pyplot as pltclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super().__init__()# super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):# 经过每条路径,并应用 ReLU 激活函数p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)# 定义模型的各个模块
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), # 第一个卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),                     # 1x1卷积层nn.ReLU(),                                            # 激活函数nn.Conv2d(64, 192, kernel_size=3, padding=1),         # 3x3卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),          # 第一个Inception块Inception(256, 128, (128, 192), (32, 96), 64),        # 第二个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),         # 第一个Inception块Inception(512, 160, (112, 224), (24, 64), 64),        # 第二个Inception块Inception(512, 128, (128, 256), (24, 64), 64),        # 第三个Inception块Inception(512, 112, (144, 288), (32, 64), 64),        # 第四个Inception块Inception(528, 256, (160, 320), (32, 128), 128),      # 第五个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),      # 第一个Inception块Inception(832, 384, (192, 384), (48, 128), 128),      # 第二个Inception块nn.AdaptiveAvgPool2d((1, 1)),                         # 自适应平均汇聚层nn.Flatten()                                          # 展平层
)# 将所有模块串联成一个完整的模型
net = nn.Sequential(b1,      # 第一模块b2,      # 第二模块b3,      # 第三模块b4,      # 第四模块b5,      # 第五模块nn.Linear(1024, 10)  # 最后一层全连接层,输出10个类别
)# 创建一个随机输入张量,并通过每一层,打印输出形状
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)# 训练参数
lr, num_epochs, batch_size = 0.1, 10, 128
# 加载数据集
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=96)
# 训练模型
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# 显示训练过程中的图表
plt.show()# 训练结果:
# 损失 0.254, 训练准确率 0.904, 测试准确率 0.866
# 1534.2 examples/sec on cuda:0# loss 0.246, train acc 0.906, test acc 0.891
# 1492.9 examples/sec on cuda:0

运行效果:
在这里插入图片描述

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087141

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成