基于ACO蚁群优化的城市最佳出行路径规划matlab仿真

2024-06-23 07:28

本文主要是介绍基于ACO蚁群优化的城市最佳出行路径规划matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

      基于ACO蚁群优化的城市最佳出行路径规划matlab仿真,可以修改城市个数,输出路径规划结果和ACO收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

点数较少时

点数规模中等时

点数较多时

(完整程序运行后无水印)

3.核心程序

...............................................................................% 更新最短路径及其信息素[Vmin,Imin] = min(Rdist);Ant_min(t)  = Vmin;Lrout(t,:)  = Lrt(Imin,:);if Ant_min(t)<GminGmin               = Ant_min(t);route(1,1:Ncity+1) = Lrout(t,:);end% 强化信息素更新for f=1:5[Rdist_min,Imin]=min(Rdist);for c=1:Ncitydtw2(Lrt(Imin,c),Lrt(Imin,c+1)) = dtw2(Lrt(Imin,c),Lrt(Imin,c+1))+e*(Q/Gmin);end Rdist(Imin)=1e4;end% 信息素更新for i=1:Ncityfor j=1:Ncitytaws(i,j) = (1-efact)*taws(i,j)+dtw1(i,j)+dtw2(i,j);endendtaws;% 绘制当前迭代的路径for i=1:Ncity+1x1(i) = x(Lrout(t,i));y1(i) = y(Lrout(t,i));end
end% 绘制全局最短路径跟踪图
figure
plot(1:t,Ant_min)
xlabel('迭代次数')
ylabel('优化收敛值')
grid on  for i=1:Ncity+1x1(i)=x(route(1,i));y1(i)=y(route(1,i));
endfigure
plot(x(1),y(1),'*k')
hold on
plot(x1,y1,'b')
hold on
plot(x,y,'ro')
title('找到的最佳路径')
grid on
62

4.本算法原理

        蚁群优化算法(Ant Colony Optimization, ACO)是一种启发式优化方法,灵感来源于蚂蚁在寻找食物过程中留下信息素并据此选择最短路径的行为。将其应用于城市最佳出行路径规划问题时,能够模拟蚂蚁探索不同路径并逐渐发现较优路径的过程,从而找到从起点到终点的最佳出行路线。在城市路径规划的ACO框架中,主要元素包括:

  • 城市节点:代表地图上的各个地点,如路口、地标等;
  • :连接两节点之间的路径,附带旅行成本(如距离、时间或费用);
  • 蚂蚁:模拟个体,每只蚂蚁从起点出发,按照一定规则探索路径至终点;
  • 信息素:沿路径释放,其浓度影响后续蚂蚁的选择,随时间蒸发。

ACO算法步骤:

       整个ACO算法的数学抽象可以总结为一个迭代优化过程,目标函数(最小化路径总长度)通过群体智能和信息素机制隐式求解。其中,信息素浓度的动态平衡体现了记忆与遗忘的自然法则,而启发式信息与信息素的联合决策机制,则巧妙地融合了全局探索与局部利用的策略,使得算法在复杂网络中具有较强的搜索能力和适应性。

5.完整程序

VVV

这篇关于基于ACO蚁群优化的城市最佳出行路径规划matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086508

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1