[AIGC] 宽度优先搜索(BFS) 讲解以及在 LeetCode 题中的应用

2024-06-22 23:04

本文主要是介绍[AIGC] 宽度优先搜索(BFS) 讲解以及在 LeetCode 题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

宽度优先搜索(Breadth-First Search,简称 BFS)是一种用于图或树结构的遍历算法。它以广度方向进行搜索,首先访问根节点,然后访问所有相邻的节点,然后再通过它们的邻居一直进行下去,直到所有的节点都被访问过。


文章目录

    • BFS 的工作过程
    • BFS 在 LeetCode 中的应用

BFS 的工作过程

BFS 从图的某一节点(称为“源”节点)开始,访问可能的所有顶点,并采取先来先服务的原则。 按照这个算法的一般操作步骤,首先创建一个队列,然后将源节点入队。然后,在图遍历过程中,当队列不为空时,从队列的头部出队一个节点,并将它的所有未访问过的邻居入队。一旦节点被标记为 “已访问”,则表示该节点已经完成了遍历。

BFS 在 LeetCode 中的应用

我们来看一看在 LeetCode 上的题编号 127,题目《单词接龙》。

题目大致为:给定两个单词(beginWord和endWord)和一个字典 wordList ,找出所有从 beginWord 到 endWord 的最短转换序列,转换需遵循如下规则:
每次转换只能改变一个字母,转换过程中的中间单词必须是字典中的单词。

这是一个标准的 BFS 问题,适合应用 BFS 来寻找字典中单词的最短转化路径。

这是该问题的 Python 代码实现:

from collections import defaultdict, deque
class Solution:def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:if endWord not in wordList: return 0l = len(beginWord)ws = defaultdict(list)for word in wordList:for i in range(l):ws[word[:i]+'*'+word[i+1:]].append(word)déf bfs(q: deque, v: dict) -> int:s, d = q.popleft()for i in range(l):nw = s[:i] + '*' + s[i+1:]for word in ws[nw]:if word == endWord: return d+1if word not in v:v[word] = Trueq.append((word, d+1))return 0qq, qe,v1, v2, flg  = deque(), deque(), {}, {}, 0qq.append((beginWord, 1))v1[beginWord] = Truereturn bfs(qq, v1)

在以上代码中,定义了双向宽度优先搜索 (bidirectional breadth-first search) 的框架,遍历的过程后都加入遍历的节点到队列,这样直到找到终止点位置或者结束遍历。对于队列中每个节点,都找他的下一个位置,将其加入到队列中,这样就实现了 BFS 遍历。此问题的求解就是找出从起始点到终止点的最短路径,也就是 BFS 中第一次找到的路径就是最短的路径。

这篇关于[AIGC] 宽度优先搜索(BFS) 讲解以及在 LeetCode 题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085664

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S