使用Metropolis蒙特卡洛方法的原子模拟

2024-06-22 22:44

本文主要是介绍使用Metropolis蒙特卡洛方法的原子模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 1.蒙特卡罗方法的目标
        • 2.热力学系综
        • 3.连续体系
        • 4.Metropolis算法
          • 1.Metropolis算法介绍
          • 2.Metropolis算法思路
        • 5.原子体系的蒙特卡洛算法
          • 1.算法的基本思想
          • 2.算法的实现过程

1.蒙特卡罗方法的目标
  • 蒙特卡罗方法可以做什么?
    提供材料的热力学信息
    评估整体的平均值(能量、压力等)。
  • 蒙特卡罗方法不能做什么?
    提供材料的动力学信息(例如:扩散常数)
2.热力学系综
  • 强度性质  广延性质
    强度性质(intensive property)是不随物质多少或系统大小而改变的物理性质。
    广延性质(extensive property)是一种物理性质,系统中此性质的量可由组成此系统所有子系统中对应性质的量相加而得。
  • 热力学系综定义了哪些热力学量是受限制的,以及哪些热力学量是自由变化的。
  • 微正则系综
    在微正则系综(NVE)中,系统的所有可能状态都具有相同的能量 E,因此都具有相同的概率。
3.连续体系
  • 对于原子或分子系统,微观状态的数量几乎是无限的,因此将总和替换为一组积分
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T Z N V T = ∫ e − U ( r N ) / k B T d r N \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}}\quad\quad\quad Z_{NVT}=\int e^{-U(r^{N})/k_{B}T}dr^{N} ρ(rN)=ZNVTeU(rN)/kBTZNVT=eU(rN)/kBTdrN
        例如:势能U的平均值:
    < U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN
        为了评估这个物理量,应该先计算所有状态的能量并评估相应的概率。然而,大多数状态具有很高能量,并因此极不可能发生(这是一种浪费时间的做法)。
        为了有效地评估该值,应该只对那些合理的少数状态进行求和,并排除其他状态。
4.Metropolis算法
1.Metropolis算法介绍

< U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN

  • 当我们需要求解一个 3N 维的积分时,
    可以使用蒙特卡罗方法,通过在一个空间内进行随机抽样,该空间包含积分定义区域的体积,统计哪些点在该体积内哪些点不在该体积内来实现。
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}} ρ(rN)=ZNVTeU(rN)/kBT

  • Metropolis算法(1953年)是一种对构型空间进行采样的方法,其采样方式是以麦克斯韦分布给出的概率ρ "访问 "给定状态。
    该方法的思路:在具有合理概率的状态集合中计算,得出该物理量的平均值

  • Metropolis算法可以得到能量分布曲线,并提供具有合理概率的构型列表。得出的构型列表称为轨迹

2.Metropolis算法思路
  • Metropolis算法的方法思路:
      1.从给定的随机构型开始
      2.进行一次试探性移动以获得新的构型
      3.将新构型与之前构型进行比较,根据概率来判断是否将新构型添加到轨迹中。
    ρ β ρ α = e − E β / k β T Q Q e − E α / k β T = e − ( E β − E α ) / k B T \frac{\rho_{\beta}}{\rho_{\alpha}}=\frac{e^{-E_{\beta}/k_{\beta}T}}{Q}\frac{Q}{e^{-E_{\alpha}/k_{\beta}T}}=e^{-(E_{\beta}-E_{\alpha})/k_{B}T} ραρβ=QeEβ/kβTeEα/kβTQ=e(EβEα)/kBT

  • 轨迹上添加新构型的概率:
      1.基于麦克斯韦分布的构型,其试探性移动(从配置i到配置i+1)将根据以下规则被接受:
         当 Δ E i , i + 1 ≤ 0 \Delta E_{i,i+1}\le0 ΔEi,i+10时,由于概率 e − Δ E i , i + 1 / k β T ≥ 1 e^{-\Delta E_{i,i+1}/k_{\beta}T}\ge1 eΔEi,i+1/kβT1而被接受
         当 Δ E i , i + 1 > 0 \Delta E_{i,i+1}>0 ΔEi,i+1>0时,以概率 e − Δ E i , i + 1 / k β T e^{-\Delta E_{i,i+1}/k_{\beta}T} eΔEi,i+1/kβT接受移动
         (可以通过生成介于0和1之间的随机数,并将其与设定的概率进行比较,来决定是否接受给定概率下的新构型。)
      2.通过多次重复此过程,可以生成一系列构型 {i = 1…N},其特征为能量 Ei,这些构型总体上具有合理的概率。

  • Metropolis算法的计算过程
      1.初始化:从构型 i = 1 i=1 i=1开始,能量为 E i E_i Ei
      2.进行一次随机试探性移动到构型 i + 1 i+1 i+1,能量为 E i + 1 E_{i+1} Ei+1,并计算能量差 Δ E \Delta E ΔE
         如果 Δ E ≤ 0 \Delta E \le 0 ΔE0,则接受移动,将新构型添加到轨迹中。
         如果 Δ E > 0 \Delta E >0 ΔE>0,则生成介于0和1之间的随机数 r r r。如果 r ≤ e x p ( − Δ E / k T ) r≤exp(-ΔE/kT) rexp(ΔE/kT),则接受移动;否则拒绝。
         在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。
      3.如果移动被接受,新构型成为状态 i + 1 i+1 i+1
        如果移动被拒绝,构型 i + 1 i+1 i+1保持不变。每次试探都应该向轨迹中添加一个构型,尽管在这种情况下,它与前一个相同。
      4. i = i + 1 i=i+1 i=i+1转到步骤2

  • 蒙特卡洛方法的缺点
      1.Metropolis蒙特卡罗方法是评估系统平均热力学的一种高效方式,然而,它并不提供系统动力学的任何信息。
      2.没有明确的时间概念,“轨迹”不一定是系统自发遵循的轨迹
      然而,蒙特卡罗方法比分子动力学方法更通用,因为它可以应用于更广泛的系统。

5.原子体系的蒙特卡洛算法
1.算法的基本思想
  • 连续模型(如在NVT下)
    基本思想
       1.首先从一个初始构型开始(原子的位置
       2.进行试探性移动(原子的位移
       3.计算能量变化
       4.使用Metropolis算法来接受或拒绝该移动。
2.算法的实现过程
  • 算法的实现:
       1.初始化:从初始随机构型开始,能量 U n = U o l d U_{n}=U_{old} Un=Uold
       2.在所有 N 个原子中随机选取一个原子 i i i,初始位置为 r i , o l d r_{i,old} ri,old
       3.试探性移动:通过随机位移将原子 i i i移动到新位置 r i , n e w r_{i,new} ri,new
       4.计算能量变化 Δ U = U n e w − U o l d \Delta U = U_{new} - U_{old} ΔU=UnewUold
       5.根据Metropolis 准则接受或拒绝移动
       6.如果试探性移动被接受,保留位移的原子作为新系统 n + 1 n+1 n+1
         如果移动被拒绝,新系统n+1保持原来构型
       7.计算统计平均值
       8.返回至步骤 2
  • 我们如何选择合适的位移呢?
    蒙特卡洛的位移
       1.首先,位移的方向必须是随机且无偏的;
       2.其次,必须选择位移的长度,使体系尽可能高效地在模型空间中移动。
       3.最后,由于原子不是在晶格上移动而是连续在空间中运动,所以位移的长度必须是随机的

这篇关于使用Metropolis蒙特卡洛方法的原子模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085623

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多