常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序

本文主要是介绍常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间复杂度O(n^2)

1、插入排序 (Insertion Sort)

        从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后向前扫描;如果该元素(已排序)大于新元素,将该元素移到下一位置;重复步骤,直到找到已排序的元素小于或者等于新元素的位置;将新元素插入到该位置后。

void insertionSort(int arr[], int n) {  for (int i = 1; i < n; ++i) {  int key = arr[i];  int j = i - 1;  while (j >= 0 && arr[j] > key) {  arr[j + 1] = arr[j];  --j;  }  arr[j + 1] = key;  }  
}

2、冒泡排序 (Bubble Sort)

        重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

void bubbleSort(int arr[], int n) {  for (int i = 0; i < n - 1; ++i) {  for (int j = 0; j < n - i - 1; ++j) {  if (arr[j] > arr[j + 1]) {  std::swap(arr[j], arr[j + 1]);  }  }  }  
}

3、简单选择排序 (Selection Sort)

        每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

void selectionSort(int arr[], int n) {  for (int i = 0; i < n - 1; i++) {  int min_idx = i;  for (int j = i + 1; j < n; j++) {  if (arr[j] < arr[min_idx]) {  min_idx = j;  }  }  std::swap(arr[min_idx], arr[i]);  }  
}  

时间复杂度O(nlog2n)

4、希尔排序(Shell Sort)

        是插入排序的一种又称“缩小增量排序”,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法的基本思想是:先将整个待排序的记录序列分割成为若干子序列(由相隔某个“增量”的记录组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。
(这里只给出增量的简化选择,实际应用中增量序列的选择会更复杂)

void shellSort(int arr[], int n) {  int gap = n / 2;  while (gap > 0) {  for (int i = gap; i < n; ++i) {  int temp = arr[i];  int j = i;  while (j >= gap && arr[j - gap] > temp) {  arr[j] = arr[j - gap];  j -= gap;  }  arr[j] = temp;  }  gap /= 2;  }  
}

5、快速排序(Quick Sort)

        通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

int partition(int arr[], int low, int high) {  int pivot = arr[high];  int i = (low - 1);  for (int j = low; j <= high - 1; j++) {  if (arr[j] < pivot) {  i++;  std::swap(arr[i], arr[j]);  }  }  std::swap(arr[i + 1], arr[high]);  return (i + 1);  
}  void quickSort(int arr[], int low, int high) {  if (low < high) {  int pi = partition(arr, low, high);  quickSort(arr, low, pi - 1);  quickSort(arr, pi + 1, high);  }  
}

6、堆排序(Heap Sort)

        堆排序是利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。堆排序主要要解决两个问题:

        1)如何根据给定的序列建初始堆

         2)如何在交换掉根结点后,将剩下的结点调整为新的堆(筛选)

void set(int p,int m){//小顶堆int i,j;i=p;j=i*2;while(j<=m){if(j<=m-1&&k[j]>k[j+1])//改为<j++;if(k[j]>=k[i])//改为<=,则为大顶堆break;else{swap(k[i],k[j]);i=j;j=i*2;}}
}void heapSort(){int i,j;for(i=n/2;i>0;i--)//建堆set(i,n);for(i=n;i>1;i--)//排序{swap(k[i],k[1]);set(1,i-1);}
}

7、归并排序 (Merge Sort)

        归并排序采用分治法的思想,将数组分成两半,分别对它们进行排序,然后将结果合并起来。

        1)编写一个辅助函数来合并两个已排序的子数组。

        2)编写主归并排序函数,该函数将递归地分解数组,直到子数组只包含一个元素(已排序),然后合并这些子数组,直到整个数组排序完成。

void merge(int arr[], int left[], int leftSize, int right[], int rightSize) {  int i = 0, j = 0, k = 0;  while (i < leftSize && j < rightSize) {  if (left[i] <= right[j]) {  arr[k++] = left[i++];  } else {  arr[k++] = right[j++];  }  }  while (i < leftSize) {  arr[k++] = left[i++];  }  while (j < rightSize) {  arr[k++] = right[j++];  }  
}  void mergeSort(int arr[], int left, int right) {  if (left < right) {  int mid = left + (right - left) / 2;  int leftSize = mid - left + 1;  int rightSize = right - mid;  int leftArr[leftSize], rightArr[rightSize];  // 拷贝数据到临时数组  for (int i = 0; i < leftSize; i++) {  leftArr[i] = arr[left + i];  }  for (int j = 0; j < rightSize; j++) {  rightArr[j] = arr[mid + 1 + j];  }  // 递归地对子数组进行排序  mergeSort(leftArr, 0, leftSize - 1);  mergeSort(rightArr, 0, rightSize - 1);  // 合并两个已排序的子数组  merge(arr, leftArr, leftSize, rightArr, rightSize);  }  
}  

时间复杂度O(d(n+rd))

8、基数排序(Radix Sort)

        基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。为了适用于负数和非整数,这里给出一个简化的版本,仅适用于非负整数,并且假设所有整数的位数相同(或可以通过填充前导零来使它们具有相同的位数)。

#include <vector>  
#include <algorithm>  void countingSort(std::vector<int>& arr, int exp) {  std::vector<int> output(arr.size());  std::vector<int> count(10, 0);  // 存储每个桶中的元素数量  for (int i = 0; i < arr.size(); i++)  count[(arr[i] / exp) % 10]++;  // 更改count[i],使其包含每个数字小于或等于i的数量  for (int i = 1; i < 10; i++)  count[i] += count[i - 1];  // 构建输出数组  for (int i = arr.size() - 1; i >= 0; i--) {  output[count[(arr[i] / exp) % 10] - 1] = arr[i];  count[(arr[i] / exp) % 10]--;  }  // 复制回原数组  for (int i = 0; i < arr.size(); i++)  arr[i] = output[i];  
}  void radixsort(std::vector<int>& arr) {  int maxVal = *std::max_element(arr.begin(), arr.end());  // 找到最大数的位数  int exp = 1;  while (maxVal / exp > 0) {  countingSort(arr, exp);  exp *= 10;  }  
}  

或者

#include <iostream>  
#include <cmath>  
#include <algorithm> // 使用std::max来找到数组中的最大值  // 获取数组中的最大值  
int getMax(int arr[], int n) {  int mx = arr[0];  for (int i = 1; i < n; i++) {  if (arr[i] > mx) {  mx = arr[i];  }  }  return mx;  
}  // 基数排序函数  
void radixsort(int arr[], int n) {  // 找到数组中的最大值  int maxVal = getMax(arr, n);  // 基数排序使用计数排序作为子程序  // 这里为了简单起见,我们假设所有的整数都是非负的  // 如果有负数,需要做适当的转换  // 对每一位执行计数排序  for (int exp = 1; maxVal / exp > 0; exp *= 10) {  int output[n]; // 输出数组  int count[10] = {0}; // 计数器数组  // 存储每个元素的频次  for (int i = 0; i < n; i++) {  int index = (arr[i] / exp) % 10;  count[index]++;  }  // 更改count[i]的值,这样它现在包含位置i处之前的所有元素  for (int i = 1; i < 10; i++) {  count[i] += count[i - 1];  }  // 生成输出数组  for (int i = n - 1; i >= 0; i--) {  int index = (arr[i] / exp) % 10;  output[count[index] - 1] = arr[i];  count[index]--;  }  // 将排序后的元素复制回原数组  for (int i = 0; i < n; i++) {  arr[i] = output[i];  }  }  
}  int main() {  int arr[] = {170, 45, 75, 90, 802, 24, 2, 66};  int n = sizeof(arr) / sizeof(arr[0]);  radixsort(arr, n);  std::cout << "Sorted array: \n";  for (int i = 0; i < n; i++) {  std::cout << arr[i] << " ";  }  std::cout << std::endl;  return 0;  
}

28edbba515494195b2405823ebde7468.png

 

这篇关于常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1084957

相关文章

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c