动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

16自定义层

import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()#从其输入中减去均值#X.mean() 计算的是整个张量的均值#希望计算特定维度上的均值,可以传递 dim 参数。#例如,每一列均值,X.mean(dim=0)def forward(self, X):return X - X.mean()layer = CenteredLayer()
"""
torch.FloatTensor: 这是 PyTorch 中的一种张量类型,专门用于存储浮点数数据。
尽管 torch.FloatTensor 是创建浮点张量的一种方式,
但在 PyTorch 的最新版本中,建议使用 torch.tensor 函数,
因为它更加通用和灵活。
"""#均值为 3.0
print(layer(torch.FloatTensor([1, 2, 3, 4, 5])))
#tensor([-2., -1.,  0.,  1.,  2.])net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
"""
torch.rand和torch.randn有什么区别?
一个均匀分布 [0,1) ,一个是标准正态分布。
"""
Y = net(torch.rand(4, 8))
print(Y.mean())
#tensor(-6.5193e-09, grad_fn=<MeanBackward0>)#带参数的层
#实现自定义版本的全连接层
"""
该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 
在此实现中,我们使用修正线性单元作为激活函数。
该层需要输入参数:in_units和units,分别表示输入数和输出数。
"""
class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()#nn.Parameter 是一种特殊的张量,会被自动添加到模型的参数列表中。self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)linear = MyLinear(5, 3)
print(linear.weight)
"""
tensor([[ 0.7130, -1.0828,  0.2203],[-2.0417, -0.1385,  0.6858],[-0.5163, -0.6009,  0.0783],[-0.3642,  0.5252, -0.6144],[-0.6479, -0.4700,  0.1486]], requires_grad=True)
"""
#使用自定义层直接执行前向传播计算。
print(linear(torch.rand(2, 5)))
"""
tensor([[0.0000, 0.0000, 0.2741],[0.0000, 0.0000, 0.5418]])
"""#使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
print(net(torch.rand(2, 64)))
"""
tensor([[9.0080],[7.6102]])
"""

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084887

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置